A classical introduction to Galois theory /

"This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide moti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Newman, Stephen C., 1952-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : Wiley, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05209nam a2200709 4500
001 ocn775780317
003 OCoLC
005 20170124071842.5
006 m o d
007 cr |||||||||||
008 120208s2012 nju ob 001 0 eng
010 |a  2012005885 
040 |a DLC  |b eng  |e pn  |c DLC  |d N$T  |d MERUC  |d EBLCP  |d IDEBK  |d UIU  |d DG1  |d E7B  |d YDXCP  |d COO  |d DEBSZ  |d CDX  |d TEFOD  |d NLGGC  |d UKDOC  |d OCLCF  |d DEBBG  |d TEFOD  |d OCLCQ  |d GrThAP 
019 |a 794663366  |a 795894775  |a 795913964  |a 813932535  |a 817086270  |a 872574879 
020 |a 9781118336670  |q (epdf) 
020 |a 1118336674  |q (epdf) 
020 |a 9781118336847  |q (epub) 
020 |a 1118336844  |q (epub) 
020 |a 9781118336830  |q (mobi) 
020 |a 1118336836  |q (mobi) 
020 |a 9781118336816  |q (electronic bk.) 
020 |a 111833681X  |q (electronic bk.) 
020 |z 9781118091395  |q (hardback) 
020 |z 1118091396 
020 |z 9781280678981 
020 |z 1280678984 
029 1 |a DEBBG  |b BV040884232 
029 1 |a DEBBG  |b BV041912195 
029 1 |a DEBSZ  |b 37274043X 
029 1 |a DEBSZ  |b 397258976 
029 1 |a DEBSZ  |b 43110817X 
029 1 |a DEBSZ  |b 449291219 
029 1 |a NZ1  |b 14690895 
029 1 |a NZ1  |b 15340796 
035 |a (OCoLC)775780317  |z (OCoLC)794663366  |z (OCoLC)795894775  |z (OCoLC)795913964  |z (OCoLC)813932535  |z (OCoLC)817086270  |z (OCoLC)872574879 
037 |a 10.1002/9781118336816  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
037 |a A350873F-43FE-469B-BF3D-1BC1A3E2E2F7  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a QA214 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 0 |a 512/.32  |2 23 
084 |a MAT003000  |2 bisacsh 
049 |a MAIN 
100 1 |a Newman, Stephen C.,  |d 1952- 
245 1 2 |a A classical introduction to Galois theory /  |c Stephen C. Newman. 
264 1 |a Hoboken, N.J. :  |b Wiley,  |c 2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematics, and a fundamental question to be considered is: For a given polynomial equation (over a given field), does a solution in terms of radicals exist? That the need to investigate the very existence of a solution is perhaps surprising and invites an overview of the history of mathematics. The classical material within the book includes theorems on polynomials, fields, and groups due to such luminaries as Gauss, Kronecker, Lagrange, Ruffini and, of course, Galois. These results figured prominently in earlier expositions of Galois theory, but seem to have gone out of fashion. This is unfortunate since, aside from being of intrinsic mathematical interest, such material provides powerful motivation for the more modern treatment of Galois theory presented later in the book. Over the course of the book, three versions of the Impossibility Theorem are presented: the first relies entirely on polynomials and fields, the second incorporates a limited amount of group theory, and the third takes full advantage of modern Galois theory. This progression through methods that involve more and more group theory characterizes the first part of the book. The latter part of the book is devoted to topics that illustrate the power of Galois theory as a computational tool, but once again in the context of solvability of polynomial equations by radicals"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a A CLASSICAL INTRODUCTION TO GALOIS THEORY; CONTENTS; PREFACE; 1 CLASSICAL FORMULAS; 1.1 Quadratic Polynomials; 1.2 Cubic Polynomials; 1.3 Quartic Polynomials; 2 POLYNOMIALS AND FIELD THEORY; 2.1 Divisibility; 2.2 Algebraic Extensions; 2.3 Degree of Extensions; 2.4 Derivatives; 2.5 Primitive Element Theorem; 2.6 Isomorphism Extension Theorem and Splitting Fields; 3 FUNDAMENTAL THEOREM ON SYMMETRIC POLYNOMIALS AND DISCRIMINANTS; 3.1 Fundamental Theorem on Symmetric Polynomials; 3.2 Fundamental Theorem on Symmetric Rational Functions; 3.3 Some Identities Based on Elementary Symmetric Polynomials. 
650 0 |a Galois theory. 
650 4 |a Mathematics. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Galois theory.  |2 fast  |0 (OCoLC)fst00937326 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Newman, Stephen C., 1952-  |t Classical introduction to Galois theory.  |d Hoboken, N.J. : Wiley, 2012  |z 9781118091395  |w (DLC) 2011053469 
856 4 0 |u https://doi.org/10.1002/9781118336816  |z Full Text via HEAL-Link 
994 |a 92  |b DG1