Statistical monitoring of complex multivariate processes : with applications in industrial process control /

"The book summarises recent advances in statistical-based process monitoring of complex multivariate process systems"--

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Krüger, Uwe, Dr
Άλλοι συγγραφείς: Xie, Lei
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex ; Hoboken, N.J. : Wiley, 2012.
Σειρά:Statistics in practice.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 08826nam a2200805 4500
001 ocn794922820
003 OCoLC
005 20170124071441.5
006 m o d
007 cr |n|||||||||
008 120605s2012 enk sb 001 0 eng
010 |a  2012023036 
040 |a DLC  |b eng  |c DLC  |d YDX  |d COO  |d N$T  |d DG1  |d YDXCP  |d UKMGB  |d E7B  |d UMI  |d UBY  |d TEFOD  |d DEBSZ  |d OCLCF  |d LRU  |d CNSPO  |d DKDLA  |d DEBBG  |d AZK  |d OCLCQ  |d RECBK  |d LOA  |d GrThAP 
016 7 |a 013735766  |2 Uk 
019 |a 811407600  |a 840106463  |a 872693662  |a 961624272  |a 962694403  |a 966221768 
020 |a 9780470517246 (Adobe PDF) 
020 |a 0470517247 (Adobe PDF) 
020 |a 9781118381267 (Adobe PDF) 
020 |a 1118381262 (Adobe PDF) 
020 |a 9781118381274 ( MobiPocket) 
020 |a 1118381270 ( MobiPocket) 
020 |z 9781119978299 (hardback) 
020 |a 9780470517253 
020 |a 0470517255 
020 |z 9780470028193 
020 |z 047002819X 
024 8 |a 9786613862228 
029 1 |a AU@  |b 000049296052 
029 1 |a AU@  |b 000051432786 
029 1 |a CHNEW  |b 000620688 
029 1 |a DEBBG  |b BV041121546 
029 1 |a DEBSZ  |b 396764614 
029 1 |a NZ1  |b 14695735 
029 1 |a NZ1  |b 15340856 
029 1 |a DEBBG  |b BV043394589 
035 |a (OCoLC)794922820  |z (OCoLC)811407600  |z (OCoLC)840106463  |z (OCoLC)872693662  |z (OCoLC)961624272  |z (OCoLC)962694403  |z (OCoLC)966221768 
037 |a CL0500000211  |b Safari Books Online 
037 |a 00205A11-1900-41C3-B18E-879B09A6702A  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a QA278 
072 7 |a MAT  |x 029020  |2 bisacsh 
082 0 0 |a 519.5/35  |2 23 
084 |a MAT029020  |2 bisacsh 
049 |a MAIN 
100 1 |a Krüger, Uwe,  |c Dr. 
245 1 0 |a Statistical monitoring of complex multivariate processes :  |b with applications in industrial process control /  |c Uwe Kruger and Lei Xie. 
264 1 |a Chichester, West Sussex ;  |a Hoboken, N.J. :  |b Wiley,  |c 2012. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
490 1 |a Statistics in practice 
520 |a "The book summarises recent advances in statistical-based process monitoring of complex multivariate process systems"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
505 8 |a Machine generated contents note: Preface Introduction I Fundamentals of Multivariate Statistical Process Control 1 Motivation for Multivariate Statistical Process Control 1.1 Summary of Statistical Process Control 1.1.1 Roots and Evolution of Statistical Process Control 1.1.2 Principles of Statistical Process Control 1.1.3 Hypothesis Testing, Type I and II errors 1.2 Why Multivariate Statistical Process Control 1.2.1 Statistically Uncorrelated Variables 1.2.2 Perfectly Correlated Variables 1.2.3 Highly Correlated Variables 1.2.4 Type I and II Errors and Dimension Reduction 1.3 Tutorial Session 2 Multivariate Data Modeling Methods 2.1 Principal Component Analysis 2.1.1 Assumptions for Underlying Data Structure 2.1.2 Geometric Analysis of Data Structure 2.1.3 A Simulation Example 2.2 Partial Least Squares 2.2.1 Assumptions for Underlying Data Structure 2.2.2 Deflation Procedure for Estimating Data Models 2.2.3 A Simulation Example 2.3 Maximum Redundancy Partial Least Squares 2.3.1 Assumptions for Underlying Data Structure 2.3.2 Source Signal Estimation 2.3.3 Geometric Analysis of Data Structure 2.3.4 A Simulation Example 2.4 Estimating the Number of Source Signals 2.4.1 Stopping Rules for PCA Models 2.4.2 Stopping Rules for PLS Models 2.5 Tutorial Session 3 Process Monitoring Charts 3.1 Fault Detection 3.1.1 Scatter Diagrams 3.1.2 Nonnegative Quadratic Monitoring Statistics 3.2 Fault Isolation and Identification 3.2.1 Contribution Charts 3.2.2 Residual-Based Tests 3.2.3 Variable Reconstruction 3.3 Geometry of Variable Projections 3.3.1 Linear Dependency of Projection Residuals 3.3.2 Geometric Analysis of Variable Reconstruction 3.4 Tutorial Session II Application Studies 4 Application to a Chemical Reaction Process 4.1 Process Description 4.2 Identification of a Monitoring Model 4.3 Diagnosis of a Fault Condition 5 Application to a Distillation Process 5.1 Process Description 5.2 Identification of a Monitoring Model 5.3 Diagnosis of a Fault Condition III Advances in Multivariate Statistical Process Control 6 Further Modeling Issues 6.1 Accuracy of Estimating PCA Models 6.1.1 Revisiting the Eigendecomposition of Sz0z0 6.1.2 Two Illustrative Examples 6.1.3 Maximum Likelihood PCA for Known Sgg 6.1.4 Maximum Likelihood PCA for Unknown Sgg 6.1.5 A Simulation Example 6.1.6 A Stopping Rule for Maximum Likelihood PCA Models 6.1.7 Properties of Model and Residual Subspace Estimates 6.1.8 Application to a Chemical Reaction Process -- Revisited 6.2 Accuracy of Estimating PLS Models 6.2.1 Bias and Variance of Parameter Estimation 6.2.2 Comparing Accuracy of PLS and OLS Regression Models 6.2.3 Impact of Error-in-Variables Structure upon PLS Models 6.2.4 Error-in-Variable Estimate for Known See 6.2.5 Error-in-Variable Estimate for Unknown See 6.2.6 Application to a Distillation Process -- Revisited 6.3 Robust Model Estimation 6.3.1 Robust Parameter Estimation 6.3.2 Trimming Approaches 6.4 Small Sample Sets 6.5 Tutorial Session 7 Monitoring Multivariate Time-Varying Processes 7.1 Problem Analysis 7.2 Recursive Principal Component Analysis 7.3 MovingWindow Principal Component Analysis 7.3.1 Adapting the Data Correlation Matrix 7.3.2 Adapting the Eigendecomposition 7.3.3 Computational Analysis of the Adaptation Procedure 7.3.4 Adaptation of Control Limits 7.3.5 Process Monitoring using an Application Delay 7.3.6 MinimumWindow Length 7.4 A Simulation Example 7.4.1 Data Generation 7.4.2 Application of PCA 7.4.3 Utilizing MWPCA based on an Application Delay 7.5 Application to a Fluid Catalytic Cracking Unit 7.5.1 Process Description 7.5.2 Data Generation 7.5.3 Pre-analysis of Simulated Data 7.5.4 Application of PCA 7.5.5 Application of MWPCA 7.6 Application to a Furnace Process 7.6.1 Process Description 7.6.2 Description of Sensor Bias 7.6.3 Application of PCA 7.6.4 Utilizing MWPCA based on an Application Delay 7.7 Adaptive Partial Least Squares 7.7.1 Recursive Adaptation of Sx0x0 and Sx0y0 7.7.2 MovingWindow Adaptation of Sv0v0 and Sv0y0 7.7.3 Adapting The Number of Source Signals 7.7.4 Adaptation of the PLS Model 7.8 Tutorial Session 8 Monitoring Changes in Covariance Structure 8.1 Problem Analysis 8.1.1 First Intuitive Example 8.1.2 Generic Statistical Analysis 8.1.3 Second Intuitive Example 8.2 Preliminary Discussion of Related Techniques 8.3 Definition of Primary and Improved Residuals 8.3.1 Primary Residuals for Eigenvectors 8.3.2 Primary Residuals for Eigenvalues 8.3.3 Comparing both Types of Primary Residuals 8.3.4 Statistical Properties of Primary Residuals 8.3.5 Improved Residuals for Eigenvalues 8.4 Revisiting the Simulation Examples in Section 8.1 8.4.1 First Simulation Example 8.4.2 Second Simulation Example 8.5 Fault Isolation and Identification 8.5.1 Diagnosis of Step-Type Fault Conditions 8.5.2 Diagnosis of General Deterministic Fault Conditions 8.5.3 A Simulation Example 8.6 Application Study to a Gearbox System 8.6.1 Process Description 8.6.2 Fault Description 8.6.3 Identification of a Monitoring Model 8.6.4 Detecting a Fault Condition 8.7 Analysis of Primary and Improved Residuals 8.7.1 Central Limit Theorem 8.7.2 Further Statistical Properties of Primary Residuals 8.7.3 Sensitivity of Statistics based on Improved Residuals 8.8 Tutorial Session IV Description of Modeling Methods 9 Principal Component Analysis 9.1 The Core Algorithm 9.2 Summary of the PCA Algorithm 9.3 Properties of a PCA Model 10 Partial Least Squares 10.1 Preliminaries 10.2 The Core Algorithm 10.3 Summary of the PLS Algorithm10.4 Properties of PLS 10.5 Properties of Maximum Redundancy PLS References Index . 
588 |a Description based on print version record and CIP data provided by publisher. 
650 0 |a Multivariate analysis. 
650 7 |a MATHEMATICS / Probability & Statistics / Multivariate Analysis.  |2 bisacsh 
650 4 |a Multivariate analysis. 
650 7 |a Multivariate analysis.  |2 fast  |0 (OCoLC)fst01029105 
650 7 |a Multivariate analysis.  |2 local 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
700 1 |a Xie, Lei. 
776 0 8 |i Print version:  |a Krüger, Uwe, Dr.  |t Advances in statistical monitoring of complex multivariate processes  |d Chichester, West Sussex ; Hoboken, N.J. : Wiley, 2012  |z 9781119978299 (hardback)  |w (DLC) 2012016445 
830 0 |a Statistics in practice. 
856 4 0 |u https://doi.org/10.1002/9780470517253  |z Full Text via HEAL-Link 
994 |a 92  |b DG1