Reinforcement learning and approximate dynamic programming for feedback control /

"Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Lewis, Frank L., Liu, Derong, 1963-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : IEEE Press, [2012]
Σειρά:IEEE series on computational intelligence.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06536nam a2200805 4500
001 ocn798809964
003 OCoLC
005 20170124072426.2
006 m o d
007 cr |||||||||||
008 120709s2012 nju ob 001 0 eng
010 |a  2012027755 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d CDX  |d DG1  |d COO  |d E7B  |d YDXCP  |d IDEBK  |d IEEEE  |d UBY  |d DEBSZ  |d DEBBG  |d OCLCQ  |d OCLCF  |d EBLCP  |d GrThAP 
019 |a 828490561  |a 951971612 
020 |a 9781118453971  |q (ePub) 
020 |a 1118453972  |q (ePub) 
020 |a 9781118453933  |q (Adobe PDF) 
020 |a 111845393X  |q (Adobe PDF) 
020 |a 9781118453964  |q (MobiPocket) 
020 |a 1118453964  |q (MobiPocket) 
020 |a 9781118453988  |q (electronic bk.) 
020 |a 1118453980  |q (electronic bk.) 
020 |z 9781118104200  |q (hardback) 
020 |z 111810420X 
020 |z 9781299189850 
020 |z 1299189857 
029 1 |a AU@  |b 000050718664 
029 1 |a CHBIS  |b 010131838 
029 1 |a CHVBK  |b 314708626 
029 1 |a DEBBG  |b BV041909916 
029 1 |a DEBSZ  |b 400042657 
029 1 |a NZ1  |b 15922083 
029 1 |a DEBBG  |b BV043394663 
035 |a (OCoLC)798809964  |z (OCoLC)828490561  |z (OCoLC)951971612 
037 |a 450235  |b MIL 
042 |a pcc 
050 0 0 |a Q325.6 
072 7 |a COM  |x 017000  |2 bisacsh 
082 0 0 |a 003/.5  |2 23 
084 |a TEC008000  |2 bisacsh 
049 |a MAIN 
245 0 0 |a Reinforcement learning and approximate dynamic programming for feedback control /  |c edited by Frank L. Lewis, UTA Automation and Robotics Research Institute, Fort Worth, TX Derong Liu, University of Illinois, Chicago, IL. 
264 1 |a Hoboken, New Jersey :  |b IEEE Press,  |c [2012] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IEEE Press series on computational intelligence 
520 |a "Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making"--  |c Provided by publisher. 
520 |a "Reinforcement learning and adaptive control can be useful for controlling a wide variety of systems including robots, industrial processes, and economical decision making"--  |c Provided by publisher. 
588 0 |a Print version record and CIP data provided by publisher. 
504 |a Includes bibliographical references and index. 
505 0 |a Series Page; Title Page; Copyright; Preface; Contributors; Part I: Feedback Control Using RL And ADP; Chapter 1: Reinforcement Learning and Approximate Dynamic Programming (RLADP)-Foundations, Common Misconceptions, and the Challenges Ahead; 1.1 Introduction; 1.2 What is RLADP?; 1.3 Some Basic Challenges in Implementing ADP; Disclaimer; References; Chapter 2: Stable Adaptive Neural Control of Partially Observable Dynamic Systems; 2.1 Introduction; 2.2 Background; 2.3 Stability Bias; 2.4 Example Application; References 
505 8 |a Chapter 3: Optimal Control of Unknown Nonlinear Discrete-Time Systems Using the Iterative Globalized Dual Heuristic Programming Algorithm3.1 Background Material; 3.2 Neuro-Optimal Control Scheme Based on the Iterative ADP Algorithm; 3.3 Generalization; 3.4 Simulation Studies; 3.5 Summary; References; Chapter 4: Learning and Optimization in Hierarchical Adaptive Critic Design; 4.1 Introduction; 4.2 Hierarchical ADP Architecture with Multiple-Goal Representation; 4.3 Case Study: The Ball-and-Beam System; 4.4 Conclusions and Future Work; Acknowledgments; References 
505 8 |a Chapter 5: Single Network Adaptive Critics Networks-Development, Analysis, and Applications5.1 Introduction; 5.2 Approximate Dynamic Programing; 5.3 SNAC; 5.4 J-SNAC; 5.5 Finite-SNAC; 5.6 Conclusions; Acknowledgments; References; Chapter 6: Linearly Solvable Optimal Control; 6.1 Introduction; 6.2 Linearly Solvable Optimal Control Problems; 6.3 Extension to Risk-Sensitive Control and Game Theory; 6.4 Properties and Algorithms; 6.5 Conclusions and Future Work; References; Chapter 7: Approximating Optimal Control with Value Gradient Learning; 7.1 Introduction 
505 8 |a 7.2 Value Gradient Learning and BPTT Algorithms7.3 A Convergence Proof for VGL(1) for Control with Function Approximation; 7.4 Vertical Lander Experiment; 7.5 Conclusions; References; Chapter 8: A Constrained Backpropagation Approach to Function Approximation and Approximate Dynamic Programming; 8.1 Background; 8.2 Constrained Backpropagation (CPROP) Approach; 8.3 Solution of Partial Differential Equations in Nonstationary Environments; 8.4 Preserving Prior Knowledge in Exploratory Adaptive Critic Designs; 8.5 Summary; Algebraic ANN Control Matrices; References 
505 8 |a Chapter 9: Toward Design of Nonlinear ADP Learning Controllers with Performance Assurance9.1 Introduction; 9.2 Direct Heuristic Dynamic Programming; 9.3 A Control Theoretic View on the Direct HDP; 9.4 Direct HDP Design with Improved Performance Case 1-Design Guided by a Priori LQR Information; 9.5 Direct HDP Design with Improved Performance Case 2-Direct HDP for Coorindated Damping Control of Low-Frequency Oscillation; 9.6 Summary; Acknowledgment; References; Chapter 10: Reinforcement Learning Control with Time-Dependent Agent Dynamics; 10.1 Introduction; 10.2 Q-Learning 
650 0 |a Reinforcement learning. 
650 0 |a Feedback control systems. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Electronics  |x General.  |2 bisacsh 
650 7 |a Feedback control systems.  |2 fast  |0 (OCoLC)fst00922447 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
700 1 |a Lewis, Frank L. 
700 1 |a Liu, Derong,  |d 1963- 
776 0 8 |i Print version:  |t Reinforcement learning and approximate dynamic programming for feedback control.  |d Malden, MA : Wiley, 2013  |z 9781118104200  |w (DLC) 2012019014 
830 0 |a IEEE series on computational intelligence. 
856 4 0 |u https://doi.org/10.1002/9781118453988  |z Full Text via HEAL-Link 
994 |a 92  |b DG1