Illumination engineering : design with nonimaging optics /

"This book brings together experts in the field who present material on a number of important and growing topics including lighting, displays, solar concentrators. The first chapter provides an overview of the field of nonimagin and illumination optics. Included in this chapter are terminology,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Koshel, R. John (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : Wiley-IEEE Press, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • IEEE Press; Title page; Copyright page; Dedication; Contents; Preface; Contributors; Glossary; CHAPTER 1: Introduction and Terminology; 1.1 What Is Illumination?; 1.2 A Brief History of Illumination Optics; 1.3 Units; 1.3.1 Radiometric Quantities; 1.3.2 Photometric Quantities; 1.4 Intensity; 1.5 Illuminance and Irradiance; 1.6 Luminance and Radiance; 1.6.1 Lambertian; 1.6.2 Isotropic; 1.7 Important Factors in Illumination Design; 1.7.1 Transfer Efficiency; 1.7.2 Uniformity of Illumination Distribution; 1.8 Standard Optics Used in Illumination Engineering; 1.8.1 Refractive Optics.
  • 1.8.2 Reflective Optics1.8.3 TIR Optics; 1.8.4 Scattering Optics; 1.8.5 Hybrid Optics; 1.9 The Process of Illumination System Design; 1.10 Is Illumination Engineering Hard?; 1.11 Format for Succeeding Chapters; References; CHAPTER 2: Étendue; 2.1 Étendue; 2.2 Conservation of Étendue; 2.2.1 Proof of Conservation of Radiance and Étendue; 2.2.2 Proof of Conservation of Generalized Étendue; 2.2.3 Conservation of Étendue from the Laws of Thermodynamics; 2.3 Other Expressions for Étendue; 2.3.1 Radiance, Luminance, and Brightness; 2.3.2 Throughput; 2.3.3 Extent; 2.3.4 Lagrange Invariant.
  • 2.3.5 Abbe Sine Condition2.3.6 Configuration or Shape Factor; 2.4 Design Examples Using Étendue; 2.4.1 Lambertian, Spatially Uniform Disk Emitter; 2.4.2 Isotropic, Spatially Uniform Disk Emitter; 2.4.3 Isotropic, Spatially Nonuniform Disk Emitter; 2.4.4 Tubular Emitter; 2.5 Concentration Ratio; 2.6 Rotational Skew Invariant; 2.6.1 Proof of Skew Invariance; 2.6.2 Refined Tubular Emitter Example; 2.7 Étendue Discussion; References; CHAPTER 3: Squeezing the Étendue; 3.1 Introduction; 3.2 Étendue Squeezers versus Étendue Rotators; 3.2.1 Étendue Rotating Mappings; 3.2.2 Étendue Squeezing Mappings.
  • 3.3 Introductory Example of Étendue Squeezer3.3.1 Increasing the Number of Lenticular Elements; 3.4 Canonical Étendue-Squeezing with Afocal Lenslet Arrays; 3.4.1 Squeezing a Collimated Beam; 3.4.2 Other Afocal Designs; 3.4.3 Étendue-Squeezing Lenslet Arrays with Other Squeeze-Factors; 3.5 Application to a Two Freeform Mirror Condenser; 3.6 Étendue Squeezing in Optical Manifolds; 3.7 Conclusions; Appendix 3.A Galilean Afocal System; Appendix 3.B Keplerian Afocal System; References; CHAPTER 4: SMS 3D Design Method; 4.1 Introduction; 4.2 State of the Art of Freeform Optical Design Methods.
  • 4.3. SMS 3D Statement of the Optical Problem4.4 SMS Chains; 4.4.1 SMS Chain Generation; 4.4.2 Conditions; 4.5 SMS Surfaces; 4.5.1 SMS Ribs; 4.5.2 SMS Skinning; 4.5.3 Choosing the Seed Rib; 4.6 Design Examples; 4.6.1 SMS Design with a Prescribed Seed Rib; 4.6.2 SMS Design with an SMS Spine as Seed Rib; 4.6.3 Design of a Lens (RR) with Thin Edge; 4.6.4 Design of an XX Condenser for a Cylindrical Source; 4.6.5 Freeform XR for Photovoltaics Applications; 4.7 Conclusions; References; CHAPTER 5: Solar Concentrators; 5.1 Concentrated Solar Radiation; 5.2 Acceptance Angle.