|
|
|
|
LEADER |
08769nam a2200829 4500 |
001 |
ocn801366216 |
003 |
OCoLC |
005 |
20170124065935.9 |
006 |
m o d |
007 |
cr n||---||||| |
008 |
120723s2012 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d N$T
|d DG1
|d COO
|d YDXCP
|d OCLCQ
|d OCLCO
|d IEEEE
|d ZMC
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d OCLCQ
|d CAUOI
|d DG1
|d GrThAP
|
020 |
|
|
|a 9781118266502
|q (electronic bk.)
|
020 |
|
|
|a 1118266501
|q (electronic bk.)
|
020 |
|
|
|a 9781118271537
|q (electronic bk.)
|
020 |
|
|
|a 111827153X
|q (electronic bk.)
|
020 |
|
|
|a 9780470919996
|
020 |
|
|
|a 047091999X
|
024 |
8 |
|
|a 9786613807076
|
029 |
1 |
|
|a AU@
|b 000049859006
|
029 |
1 |
|
|a AU@
|b 000051558777
|
029 |
1 |
|
|a DEBSZ
|b 377426849
|
029 |
1 |
|
|a DEBSZ
|b 39722303X
|
029 |
1 |
|
|a DEBSZ
|b 425884899
|
029 |
1 |
|
|a DEBSZ
|b 431084475
|
029 |
1 |
|
|a NZ1
|b 14790352
|
029 |
1 |
|
|a NZ1
|b 15341067
|
035 |
|
|
|a (OCoLC)801366216
|
050 |
|
4 |
|a Q325.6
|b .K85 2012
|
072 |
|
7 |
|a COM
|x 005030
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 004000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/1
|a 006.31
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Kulkarni, Parag.
|
245 |
1 |
0 |
|a Reinforcement and systemic machine learning for decision making /
|c Parag Kulkarni.
|
264 |
|
1 |
|a Hoboken :
|b John Wiley & Sons,
|c [2012]
|
264 |
|
4 |
|c ©2012
|
300 |
|
|
|a 1 online resource (422 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a IEEE Press Series on Systems Science and Engineering ;
|v v. 1
|
505 |
0 |
0 |
|g ch. 1:
|t Introduction to Reinforcement and Systemic Machine Learning --
|g 1.1.
|t Introduction --
|g 1.2.
|t Supervised, Unsupervised, and Semisupervised Machine Learning --
|g 1.3.
|t Traditional Learning Methods and History of Machine Learning --
|g 1.4.
|t What is Machine Learning? --
|g 1.5.
|t Machine-Learning Problem --
|g 1.6.
|t Learning Paradigms --
|g 1.7.
|t Machine-Learning Techniques and Paradigms --
|g 1.8.
|t What is Reinforcement Learning? --
|g 1.9.
|t Reinforcement Function and Environment Function --
|g 1.10.
|t Need of Reinforcement Learning --
|g 1.11.
|t Reinforcement Learning and Machine Intelligence --
|g 1.12.
|t What is Systemic Learning? --
|g 1.13.
|t What Is Systemic Machine Learning? --
|g 1.14.
|t Challenges in Systemic Machine Learning --
|g 1.15.
|t Reinforcement Machine Learning and Systemic Machine Learning --
|g 1.16.
|t Case Study Problem Detection in a Vehicle --
|g 1.17.
|t Summary --
|g Reference.
|
505 |
8 |
0 |
|g ch. 2:
|t Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning --
|g 2.1.
|t Introduction --
|g 2.2.
|t What is Systemic Machine Learning? --
|g 2.3.
|t Generalized Systemic Machine-Learning Framework --
|g 2.4.
|t Multiperspective Decision Making and Multiperspective Learning --
|g 2.5.
|t Dynamic and Interactive Decision Making --
|g 2.6.
|t The Systemic Learning Framework --
|g 2.7.
|t System Analysis --
|g 2.8.
|t Case Study:
|t Need of Systemic Learning in the Hospitality Industry --
|g 2.9.
|t Summary.
|
505 |
8 |
0 |
|g ch. 3.
|t :
|t Reinforcement Learning --
|g 3.1.
|t Introduction --
|g 3.2.
|t Learning Agents --
|g 3.3.
|t Returns and Reward Calculations --
|g 3.4.
|t Reinforcement Learning and Adaptive Control --
|g 3.5.
|t Dynamic Systems --
|g 3.6.
|t Reinforcement Learning and Control --
|g 3.7.
|t Markov Property and Markov Decision Process --
|g 3.8.
|t Value Functions --
|g 3.9.
|t Learning An Optimal Policy (Model-Based and Model-Free Methods) --
|g 3.10.
|t Dynamic Programming --
|g 3.11.
|t Adaptive Dynamic Programming --
|g 3.12.
|t Example:
|t Reinforcement Learning for Boxing Trainer --
|g 3.13.
|t Summary --
|g Reference.
|
505 |
8 |
0 |
|g ch. 4:
|t Systemic Machine Learning and Model --
|g 4.1.
|t Introduction --
|g 4.2.
|t A Framework for Systemic Learning --
|g 4.3.
|t Capturing THE Systemic View --
|g 4.4.
|t Mathematical Representation of System Interactions --
|g 4.5.
|t Impact Function --
|g 4.6.
|t Decision-Impact Analysis --
|g 4.7.
|t Summary.
|
505 |
8 |
0 |
|g ch. 5:
|t Inference and Information Integration --
|g 5.1.
|t Introduction --
|g 5.2.
|t Inference Mechanisms and Need --
|g 5.3.
|t Integration of Context and Inference --
|g 5.4.
|t Statistical Inference and Induction --
|g 5.5.
|t Pure Likelihood Approach --
|g 5.6.
|t Bayesian Paradigm and Inference --
|g 5.7.
|t Time-Based Inference --
|g 5.8.
|t Inference to Build a System View --
|g 5.9.
|t Summary.
|
505 |
8 |
0 |
|g ch. 6:
|t Adaptive Learning --
|g 6.1.
|t Introduction --
|g 6.2.
|t Adaptive Learning and Adaptive Systems --
|g 6.3.
|t What is Adaptive Machine Learning? --
|g 6.4.
|t Adaptation and Learning Method Selection Based on Scenario --
|g 6.5.
|t Systemic Learning and Adaptive Learning --
|g 6.6.
|t Competitive Learning and Adaptive Learning --
|g 6.7.
|t Examples --
|g 6.8.
|t Summary.
|
505 |
8 |
0 |
|g ch. 7:
|t Multiperspective and Whole-System Learning --
|g 7.1.
|t Introduction --
|g 7.2.
|t Multiperspective Context Building --
|g 7.3.
|t Multiperspective Decision Making and Multiperspective Learning --
|g 7.4.
|t Whole-System Learning and Multiperspective Approaches --
|g 7.5.
|t Case Study Based on Multiperspective Approach --
|g 7.6.
|t Limitations to a Multiperspective Approach --
|g 7.7.
|t Summary.
|
505 |
8 |
0 |
|g ch. 8:
|t Incremental Learning and Knowledge Representation --
|g 8.1.
|t Introduction --
|g 8.2.
|t Why Incremental Learning? --
|g 8.3.
|t Learning from What Is Already Learned --
|g 8.4.
|t Supervised Incremental Learning --
|g 8.5.
|t Incremental Unsupervised Learning and Incremental Clustering --
|g 8.6.
|t Semisupervised Incremental Learning --
|g 8.7.
|t Incremental and Systemic Learning --
|g 8.8.
|t Incremental Closeness Value and Learning Method --
|g 8.9.
|t Learning and Decision-Making Model --
|g 8.10.
|t Incremental Classification Techniques --
|g 8.11.
|t Case Study: Incremental Document Classification --
|g 8.12.
|t Summary.
|
505 |
8 |
0 |
|g ch. 9 Knowledge Augmentation: A Machine Learning Perspective --
|g 9.1.
|t Introduction --
|g 9.2.
|t Brief History and Related Work --
|g 9.3.
|t Knowledge Augmentation and Knowledge Elicitation --
|g 9.4.
|t Life Cycle of Knowledge --
|g 9.5.
|t Incremental Knowledge Representation --
|g 9.6.
|t Case-Based Learning and Learning with Reference Knowledge Loss --
|g 9.7.
|t Knowledge Augmentation: Techniques and Methods --
|g 9.8.
|t Heuristic Learning --
|g 9.9.
|t Systemic Machine Learning and Knowledge Augmentation --
|g 9.10.
|t Knowledge Augmentation in Complex Learning Scenarios --
|g 9.11.
|t Case Studies --
|g 9.12.
|t Summary.
|
505 |
8 |
0 |
|g ch. 10:
|t Building a Learning System --
|g 10.1.
|t Introduction --
|g 10.2.
|t Systemic Learning System --
|g 10.3.
|t Algorithm Selection --
|g 10.4.
|t Knowledge Representation --
|g 10.4.1.
|t Practical Scenarios and Case Study --
|g 10.5.
|t Designing a Learning System --
|g 10.6.
|t Making System to Behave Intelligently --
|g 10.7.
|t Example-Based Learning --
|g 10.8.
|t Holistic Knowledge Framework and Use of Reinforcement Learning --
|g 10.9.
|t Intelligent Agents Deployment and Knowledge Acquisition and Reuse --
|g 10.10.
|t Case-Based Learning: Human Emotion-Detection System --
|g 10.11.
|t Holistic View in Complex Decision Problem --
|g 10.12.
|t Knowledge Representation and Data Discovery --
|g 10.13.
|t Components --
|g 10.14.
|t Future of Learning Systems and Intelligent Systems --
|g 10.15.
|t Summary --
|g Appendix A:
|t Statistical Learning Methods --
|g Appendix B:
|t Markov Processes.
|
520 |
|
|
|a Reinforcement and Systemic Machine Learning for Decision MakingThere are always difficulties in making machines that learn from experience. Complete information is not always available--or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm--creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new and g.
|
588 |
0 |
|
|a Print version record.
|
650 |
|
0 |
|a Reinforcement learning.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Decision making.
|
650 |
|
4 |
|a Decision Making.
|
650 |
|
4 |
|a TECHNOLOGY & ENGINEERING
|x Electronics
|x General.
|
650 |
|
4 |
|a Science.
|
650 |
|
4 |
|a Computer science.
|
650 |
|
7 |
|a COMPUTERS
|x Enterprise Applications
|x Business Intelligence Tools.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Decision making.
|2 fast
|0 (OCoLC)fst00889035
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Reinforcement learning.
|2 fast
|0 (OCoLC)fst01732553
|
655 |
|
4 |
|a Electronic books.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
776 |
0 |
8 |
|i Print version:
|a Kulkarni, Parag.
|t Reinforcement and Systemic Machine Learning for Decision Making.
|d Hoboken : John Wiley & Sons, ©2012
|z 9780470919996
|
830 |
|
0 |
|a IEEE Press series on systems science and engineering.
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9781118266502
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|