|
|
|
|
LEADER |
05050nam a2200649 4500 |
001 |
ocn809642590 |
003 |
OCoLC |
005 |
20170124072258.1 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
120911s2013 gw a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d OCLCQ
|d UIU
|d UKMGB
|d DG1
|d COO
|d YDXCP
|d OCLCF
|d DEBSZ
|d OCLCQ
|d EBLCP
|d GrThAP
|
016 |
7 |
|
|a 016196383
|2 Uk
|
020 |
|
|
|a 9783527651931
|q (electronic bk.)
|
020 |
|
|
|a 3527651934
|q (electronic bk.)
|
020 |
|
|
|a 9783527651962
|q (electronic bk.)
|
020 |
|
|
|a 3527651969
|q (electronic bk.)
|
020 |
|
|
|a 9781283592154
|q (MyiLibrary)
|
020 |
|
|
|a 1283592150
|q (MyiLibrary)
|
020 |
|
|
|z 9783527408320
|
029 |
1 |
|
|a AU@
|b 000050138896
|
029 |
1 |
|
|a CHBIS
|b 009914514
|
029 |
1 |
|
|a CHVBK
|b 199574774
|
029 |
1 |
|
|a DEBBG
|b BV041069475
|
029 |
1 |
|
|a DEBBG
|b BV041829459
|
029 |
1 |
|
|a DEBSZ
|b 43121168X
|
029 |
1 |
|
|a DEBSZ
|b 449320634
|
029 |
1 |
|
|a NZ1
|b 15916328
|
035 |
|
|
|a (OCoLC)809642590
|
050 |
|
4 |
|a QC611.92
|
072 |
|
7 |
|a TEC
|x 039000
|2 bisacsh
|
082 |
0 |
4 |
|a 537.623
|2 23
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Bezryadin, Alexey.
|
245 |
1 |
0 |
|a Superconductivity in nanowires :
|b fabrication and quantum transport /
|c Alexey Bezryadin.
|
264 |
|
1 |
|a Weinheim :
|b Wiley-VCH,
|c [2013]
|
264 |
|
4 |
|c ©2013
|
300 |
|
|
|a 1 online resource (252 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 241-245) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Series page; Title page; Copyright page; Preface; Abbreviations; Notations; 1 Introduction; 2 Selected Theoretical Topics Relevant to Superconducting Nanowires; 2.1 Free or Usable Energy of Superconducting Condensates; 2.2 Helmholtz and Gibbs Free Energies; 2.3 Fluctuation Probabilities; 2.4 Work Performed by a Current Source on the Condensate in a Thin Wire; 2.5 Helmholtz Energy of Superconducting Wires; 2.6 Gibbs Energy of Superconducting Wires; 2.7 Relationship between Gibbs and Helmholtz Energy Densities; 2.8 Relationship between Thermal Fluctuations and Usable Energy
|
505 |
8 |
|
|a 2.9 Calculus of Variations2.10 Ginzburg-Landau Equations; 2.11 Little-Parks Effect; 2.12 Kinetic Inductance and the CPR of a Thin Wire; 2.13 Drude Formula and the Density of States; 3 Stewart-McCumber Model; 3.1 Kinetic Inductance and the Amplitude of Small Oscillations; 3.2 Mechanical Analogy for the Stewart-McCumber Model; 3.3 Macroscopic Quantum Phenomena in the Stewart-McCumber Model; 3.4 Schmid-Bulgadaev Quantum Phase Transition in Shunted Junctions; 3.5 Stewart-McCumber Model with Normalized Variables; 4 Fabrication of Nanowires Using Molecular Templates
|
505 |
8 |
|
|a 4.1 Choice of Templating Molecules4.2 DNA Molecules as Templates; 4.3 Significance of the So-Called "White Spots"; 5 Experimental Methods; 5.1 Sample Installation; 5.2 Electronic Transport Measurements; 6 Resistance of Nanowires Made of Superconducting Materials; 6.1 Basic Properties; 6.2 Little's Phase Slips; 6.3 Little's Fit; 6.4 LAMH Model of Phase Slippage at Low Bias Currents; 6.5 Comparing LAMH and Little's Fit; 7 Golubev and Zaikin Theory of Thermally Activated Phase Slips; 8 Stochastic Premature Switching and Kurkijärvi Theory; 8.1 Stochastic Switching Revealed by V-I Characteristics
|
505 |
8 |
|
|a 8.2 "Geiger Counter" for Little's Phase Slips8.3 Measuring Switching Current Distributions; 8.4 Kurkijärvi-Fulton-Dunkleberger (KFD) Transformation; 8.5 Examples of Applying KFD Transformations; 8.6 Inverse KFD Transformation; 8.7 Universal 3/2 Power Law for Phase Slip Barrier; 8.8 Rate of thermally Activated Phase Slips at High Currents; 8.9 Kurkijärvi Dispersion Power Laws of 2/3 and 1/3; 9 Macroscopic Quantum Tunneling in Thin Wires; 9.1 Giordano Model of Quantum Phase Slips (QPS) in Thin Wires; 9.2 Experimental Tests of the Giordano Model; 9.3 Golubev and Zaikin QPS Theory
|
505 |
8 |
|
|a 9.4 Khlebnikov Theory9.5 Spheres of Influence of QPS and TAPS Regimes; 9.6 Kurkijärvi-Garg Model; 9.7 Theorem: Inverse Relationship between Dispersion and the Slope of the Switching Rate Curve; 10 Superconductor-Insulator Transition (SIT) in Thin and Short Wires; 10.1 Simple Model of SIT in Thin Wires; 11 Bardeen Formula for the Temperature Dependence of the Critical Current; Appendix A: Superconductivity in MoGe Alloys; Appendix B: Variance and the Variance Estimator; Appendix C: Problems and Solutions; References; Index
|
650 |
|
0 |
|a Superconductivity.
|
650 |
|
0 |
|a Nanowires.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Superconductors & Superconductivity.
|2 bisacsh
|
650 |
|
7 |
|a Nanowires.
|2 fast
|0 (OCoLC)fst01032641
|
650 |
|
7 |
|a Superconductivity.
|2 fast
|0 (OCoLC)fst01138825
|
655 |
|
4 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a Bezryadin, Alexey.
|t Superconductivity in nanowires.
|d Weinheim : Wiley-VCH, ©2013
|z 9783527408320
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9783527651931
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|