Superconductivity in nanowires : fabrication and quantum transport /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bezryadin, Alexey
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim : Wiley-VCH, [2013]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05050nam a2200649 4500
001 ocn809642590
003 OCoLC
005 20170124072258.1
006 m o d
007 cr cnu---unuuu
008 120911s2013 gw a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d UIU  |d UKMGB  |d DG1  |d COO  |d YDXCP  |d OCLCF  |d DEBSZ  |d OCLCQ  |d EBLCP  |d GrThAP 
016 7 |a 016196383  |2 Uk 
020 |a 9783527651931  |q (electronic bk.) 
020 |a 3527651934  |q (electronic bk.) 
020 |a 9783527651962  |q (electronic bk.) 
020 |a 3527651969  |q (electronic bk.) 
020 |a 9781283592154  |q (MyiLibrary) 
020 |a 1283592150  |q (MyiLibrary) 
020 |z 9783527408320 
029 1 |a AU@  |b 000050138896 
029 1 |a CHBIS  |b 009914514 
029 1 |a CHVBK  |b 199574774 
029 1 |a DEBBG  |b BV041069475 
029 1 |a DEBBG  |b BV041829459 
029 1 |a DEBSZ  |b 43121168X 
029 1 |a DEBSZ  |b 449320634 
029 1 |a NZ1  |b 15916328 
035 |a (OCoLC)809642590 
050 4 |a QC611.92 
072 7 |a TEC  |x 039000  |2 bisacsh 
082 0 4 |a 537.623  |2 23 
049 |a MAIN 
100 1 |a Bezryadin, Alexey. 
245 1 0 |a Superconductivity in nanowires :  |b fabrication and quantum transport /  |c Alexey Bezryadin. 
264 1 |a Weinheim :  |b Wiley-VCH,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (252 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 241-245) and index. 
588 0 |a Print version record. 
505 0 |a Series page; Title page; Copyright page; Preface; Abbreviations; Notations; 1 Introduction; 2 Selected Theoretical Topics Relevant to Superconducting Nanowires; 2.1 Free or Usable Energy of Superconducting Condensates; 2.2 Helmholtz and Gibbs Free Energies; 2.3 Fluctuation Probabilities; 2.4 Work Performed by a Current Source on the Condensate in a Thin Wire; 2.5 Helmholtz Energy of Superconducting Wires; 2.6 Gibbs Energy of Superconducting Wires; 2.7 Relationship between Gibbs and Helmholtz Energy Densities; 2.8 Relationship between Thermal Fluctuations and Usable Energy 
505 8 |a 2.9 Calculus of Variations2.10 Ginzburg-Landau Equations; 2.11 Little-Parks Effect; 2.12 Kinetic Inductance and the CPR of a Thin Wire; 2.13 Drude Formula and the Density of States; 3 Stewart-McCumber Model; 3.1 Kinetic Inductance and the Amplitude of Small Oscillations; 3.2 Mechanical Analogy for the Stewart-McCumber Model; 3.3 Macroscopic Quantum Phenomena in the Stewart-McCumber Model; 3.4 Schmid-Bulgadaev Quantum Phase Transition in Shunted Junctions; 3.5 Stewart-McCumber Model with Normalized Variables; 4 Fabrication of Nanowires Using Molecular Templates 
505 8 |a 4.1 Choice of Templating Molecules4.2 DNA Molecules as Templates; 4.3 Significance of the So-Called "White Spots"; 5 Experimental Methods; 5.1 Sample Installation; 5.2 Electronic Transport Measurements; 6 Resistance of Nanowires Made of Superconducting Materials; 6.1 Basic Properties; 6.2 Little's Phase Slips; 6.3 Little's Fit; 6.4 LAMH Model of Phase Slippage at Low Bias Currents; 6.5 Comparing LAMH and Little's Fit; 7 Golubev and Zaikin Theory of Thermally Activated Phase Slips; 8 Stochastic Premature Switching and Kurkijärvi Theory; 8.1 Stochastic Switching Revealed by V-I Characteristics 
505 8 |a 8.2 "Geiger Counter" for Little's Phase Slips8.3 Measuring Switching Current Distributions; 8.4 Kurkijärvi-Fulton-Dunkleberger (KFD) Transformation; 8.5 Examples of Applying KFD Transformations; 8.6 Inverse KFD Transformation; 8.7 Universal 3/2 Power Law for Phase Slip Barrier; 8.8 Rate of thermally Activated Phase Slips at High Currents; 8.9 Kurkijärvi Dispersion Power Laws of 2/3 and 1/3; 9 Macroscopic Quantum Tunneling in Thin Wires; 9.1 Giordano Model of Quantum Phase Slips (QPS) in Thin Wires; 9.2 Experimental Tests of the Giordano Model; 9.3 Golubev and Zaikin QPS Theory 
505 8 |a 9.4 Khlebnikov Theory9.5 Spheres of Influence of QPS and TAPS Regimes; 9.6 Kurkijärvi-Garg Model; 9.7 Theorem: Inverse Relationship between Dispersion and the Slope of the Switching Rate Curve; 10 Superconductor-Insulator Transition (SIT) in Thin and Short Wires; 10.1 Simple Model of SIT in Thin Wires; 11 Bardeen Formula for the Temperature Dependence of the Critical Current; Appendix A: Superconductivity in MoGe Alloys; Appendix B: Variance and the Variance Estimator; Appendix C: Problems and Solutions; References; Index 
650 0 |a Superconductivity. 
650 0 |a Nanowires. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Superconductors & Superconductivity.  |2 bisacsh 
650 7 |a Nanowires.  |2 fast  |0 (OCoLC)fst01032641 
650 7 |a Superconductivity.  |2 fast  |0 (OCoLC)fst01138825 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Bezryadin, Alexey.  |t Superconductivity in nanowires.  |d Weinheim : Wiley-VCH, ©2013  |z 9783527408320 
856 4 0 |u https://doi.org/10.1002/9783527651931  |z Full Text via HEAL-Link 
994 |a 92  |b DG1