The stochastic perturbation method for computational mechanics /

"Probabilistic analysis is increasing in popularity and importance within engineering and the applied sciences. However, the stochastic perturbation technique is a fairly recent development and therefore remains as yet unknown to many students, researchers and engineers. Fields in which the met...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kamiński, M. M. (Marcin M.), 1969-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : Wiley, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 07740nam a2200733 4500
001 ocn812531839
003 OCoLC
005 20170124070405.1
006 m o d
007 cr |||||||||||
008 121009s2013 enk ob 001 0 eng
010 |a  2012041383 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d DG1  |d N$T  |d E7B  |d OCLCF  |d RECBK  |d UKDOC  |d YDXCP  |d COO  |d IDEBK  |d EBLCP  |d DEBSZ  |d DEBBG  |d OCLCQ  |d LOA  |d GrThAP 
019 |a 827207524  |a 828247113  |a 842860129  |a 966148076 
020 |a 9781118481837  |q (ePub) 
020 |a 1118481836  |q (ePub) 
020 |a 9781118481813  |q (MobiPocket) 
020 |a 111848181X  |q (MobiPocket) 
020 |a 9781118481820  |q (Adobe PDF) 
020 |a 1118481828  |q (Adobe PDF) 
020 |a 9781118481844  |q (electronic bk.) 
020 |a 1118481844  |q (electronic bk.) 
020 |a 9781299188747  |q (MyiLibrary) 
020 |a 1299188745  |q (MyiLibrary) 
020 |z 9780470770825  |q (hardback) 
020 |z 0470770821  |q (hardback) 
029 1 |a AU@  |b 000053301094 
029 1 |a DEBBG  |b BV041069308 
029 1 |a DEBBG  |b BV041905155 
029 1 |a DEBSZ  |b 431332746 
029 1 |a DKDLA  |b 820120-katalog:000655367 
029 1 |a NZ1  |b 15341588 
029 1 |a DEBBG  |b BV043395105 
035 |a (OCoLC)812531839  |z (OCoLC)827207524  |z (OCoLC)828247113  |z (OCoLC)842860129  |z (OCoLC)966148076 
037 |a 450124  |b MIL 
042 |a pcc 
050 0 0 |a TA340 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 0 |a 620.001/51922  |2 23 
084 |a SCI041000  |2 bisacsh 
049 |a MAIN 
100 1 |a Kamiński, M. M.  |q (Marcin M.),  |d 1969- 
245 1 4 |a The stochastic perturbation method for computational mechanics /  |c Marcin Kamiński. 
264 1 |a Chichester, West Sussex, United Kingdom :  |b Wiley,  |c 2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "Probabilistic analysis is increasing in popularity and importance within engineering and the applied sciences. However, the stochastic perturbation technique is a fairly recent development and therefore remains as yet unknown to many students, researchers and engineers. Fields in which the methodology can be applied are widespread, including various branches of engineering, heat transfer and statistical mechanics, reliability assessment and also financial investments or economical prognosis in analytical and computational contexts. Stochastic Perturbation Method in Applied Sciences and Engineering is devoted to the theoretical aspects and computational implementation of the generalized stochastic perturbation technique. It is based on any order Taylor expansions of random variables and enables for determination of up to fourth order probabilistic moments and characteristics of the physical system response. Key features: Provides a grounding in the basic elements of statistics and probability and reliability engineering Describes the Stochastic Finite, Boundary Element and Finite Difference Methods, formulated according to the perturbation method Demonstrates dual computational implementation of the perturbation method with the use of Direct Differentiation Method and the Response Function Method Accompanied by a website (www.wiley.com/go/kaminski) with supporting stochastic numerical software Covers the computational implementation of the homogenization method for periodic composites with random and stochastic material properties Features case studies, numerical examples and practical applications Stochastic Perturbation Method in Applied Sciences and Engineering is a comprehensive reference for researchers and engineers, and is an ideal introduction to the subject for postgraduate and graduate students"--  |c Provided by publisher. 
520 |a "Offers a complete overveiew of the stochastic perturbation technique, which is still a new area for a wide spectrum of researchers"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
500 |a Machine generated contents note: Introduction 3 1. Mathematical considerations 14 1.1. Stochastic perturbation technique basis 14 1.2. Least squares technique description 34 1.3. Time series analysis 47 2. The Stochastic Finite Element Method (SFEM) 73 2.1. Governing equations and variational formulation 73 2.1.1. Linear potential problems 73 2.1.2. Linear elastostatics 75 2.1.3. Nonlinear elasticity problems 78 2.1.4. Variational equations of elastodynamics 79 2.1.5. Transient analysis of the heat transfer 80 2.1.6. Thermo-piezoelectricity governing equations 82 2.1.7. Navier-Stokes equations 86 2.2. Stochastic Finite Element Method equations 89 2.2.1. Linear potential problems 89 2.2.2. Linear elastostatics 91 2.2.3. Nonlinear elasticity problems 94 2.2.4. SFEM in elastodynamics 98 2.2.5. Transient analysis of the heat transfer 101 2.2.6. Coupled thermo-piezoelectrostatics SFEM equations 105 2.2.7. Navier-Stokes perturbation-based equations 107 2.3. Computational illustrations 109 2.3.1. Linear potential problems 109 2.3.1.1. 1D fluid flow with random viscosity 109 2.3.1.2. 2D potential problem by the response function 114 2.3.2. Linear elasticity 118 2.3.2.1. Simple extended bar with random stiffness 118 2.3.2.2. Elastic stability analysis of the steel telecommunication tower 123 2.3.3. Nonlinear elasticity problems 129 2.3.4. Stochastic vibrations of the elastic structures 133 2.3.4.1. Forced vibrations with random parameters for a simple 2 d.o.f. system 133 2.3.4.2. Eigenvibrations of the steel telecommunication tower with random stiffness 138 2.3.5. Transient analysis of the heat transfer 140 2.3.5.1. Heat conduction in the statistically homogeneous rod 140 2.3.5.2. Transient heat transfer analysis by the RFM 145 3. The Stochastic Boundary Element Method (SBEM) 152 3.1. Deterministic formulation of the Boundary Element Method 151 3.2. Stochastic generalized perturbation approach to the BEM 156 3.3. The Response Function Method into the SBEM equations 158 3.4. Computational experiments 162 4. The Stochastic Finite Difference Method (SFDM) 186 4.1. Analysis of the unidirectional problems with Finite Differences 186 4.1.1. Elasticity problems 186 4.1.2. Determination of the critical moment for the thin-walled elastic structures 199 4.1.3. Introduction to the elastodynamics using difference calculus 204 4.1.4. Parabolic differential equations 210 4.2. Analysis of the boundary value problems on 2D grids 214 4.2.1. Poisson equation 214 4.2.2. Deflection of elastic plates in Cartesian coordinates 219 4.2.3. Vibration analysis of the elastic plates 227 5. Homogenization problem 230 5.1. Composite material model 232 5.2. Statement of the problem and basic equations 237 5.3. Computational implementation 244 5.4. Numerical experiments 246 6. Concluding remarks 284 7. References 289 8. Index 300. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Mathematical Considerations -- The Stochastic Finite Element Method -- Stochastic Boundary Element Method -- The Stochastic Finite Difference Method -- Homogenization Problem. 
650 0 |a Engineering  |x Statistical methods. 
650 0 |a Perturbation (Mathematics) 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a Engineering  |x Statistical methods.  |2 fast  |0 (OCoLC)fst00910415 
650 7 |a Perturbation (Mathematics)  |2 fast  |0 (OCoLC)fst01058905 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Kamiński, M.M. (Marcin M.), 1969-  |t Stochastic perturbation method for computational mechanics  |z 9780470770825  |w (DLC) 2012029897 
856 4 0 |u https://doi.org/10.1002/9781118481844  |z Full Text via HEAL-Link 
994 |a 92  |b DG1