An introduction to audio content analysis : applications in signal processing and music informatics /

"With the proliferation of digital audio distribution over digital media, audio content analysis is fast becoming a requirement for designers of intelligent signal-adaptive audio processing systems. Written by a well-known expert in the field, this book provides quick access to different analys...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lerch, Alexander
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : Wiley, [2012]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: 1.1. Audio Content
  • 1.2.A Generalized Audio Content Analysis System
  • 2.1. Audio Signals
  • 2.1.1. Periodic Signals
  • 2.1.2. Random Signals
  • 2.1.3. Sampling and Quantization
  • 2.1.4. Statistical Signal Description
  • 2.2. Signal Processing
  • 2.2.1. Convolution
  • 2.2.2. Block-Based Processing
  • 2.2.3. Fourier Transform
  • 2.2.4. Constant Q Transform
  • 2.2.5. Auditory Filterbanks
  • 2.2.6. Correlation Function
  • 2.2.7. Linear Prediction
  • 3.1. Audio Pre-Processing
  • 3.1.1. Down-Mixing
  • 3.1.2. DC Removal
  • 3.1.3. Normalization
  • 3.1.4. Down-Sampling
  • 3.1.5. Other Pre-Processing Options
  • 3.2. Statistical Properties
  • 3.2.1. Arithmetic Mean
  • 3.2.2. Geometric Mean
  • 3.2.3. Harmonic Mean
  • 3.2.4. Generalized Mean
  • 3.2.5. Centroid
  • 3.2.6. Variance and Standard Deviation
  • 3.2.7. Skewness
  • 3.2.8. Kurtosis
  • 3.2.9. Generalized Central Moments
  • 3.2.10. Quantiles and Quantile Ranges
  • 3.3. Spectral Shape
  • 3.3.1. Spectral Rolloff.
  • Contents note continued: 3.3.2. Spectral Flux
  • 3.3.3. Spectral Centroid
  • 3.3.4. Spectral Spread
  • 3.3.5. Spectral Decrease
  • 3.3.6. Spectral Slope
  • 3.3.7. Mel Frequency Cepstral Coefficients
  • 3.4. Signal Properties
  • 3.4.1. Tonalness
  • 3.4.2. Autocorrelation Coefficients
  • 3.4.3. Zero Crossing Rate
  • 3.5. Feature Post-Processing
  • 3.5.1. Derived Features
  • 3.5.2. Normalization and Mapping
  • 3.5.3. Subfeatures
  • 3.5.4. Feature Dimensionality Reduction
  • 4.1. Human Perception of Intensity and Loudness
  • 4.2. Representation of Dynamics in Music
  • 4.3. Features
  • 4.3.1. Root Mean Square
  • 4.4. Peak Envelope
  • 4.5. Psycho-Acoustic Loudness Features
  • 4.5.1. EBU R128
  • 5.1. Human Perception of Pitch
  • 5.1.1. Pitch Scales
  • 5.1.2. Chroma Perception
  • 5.2. Representation of Pitch in Music
  • 5.2.1. Pitch Classes and Names
  • 5.2.2. Intervals
  • 5.2.3. Root Note, Mode, and Key
  • 5.2.4. Chords and Harmony
  • 5.2.5. The Frequency of Musical Pitch
  • 5.3. Fundamental Frequency Detection.
  • Contents note continued: 5.3.1. Detection Accuracy
  • 5.3.2. Pre-Processing
  • 5.3.3. Monophonic Input Signals
  • 5.3.4. Polyphonic Input Signals
  • 5.4. Tuning Frequency Estimation
  • 5.5. Key Detection
  • 5.5.1. Pitch Chroma
  • 5.5.2. Key Recognition
  • 5.6. Chord Recognition
  • 6.1. Human Perception of Temporal Events
  • 6.1.1. Onsets
  • 6.1.2. Tempo and Meter
  • 6.1.3. Rhythm
  • 6.1.4. Timing
  • 6.2. Representation of Temporal Events in Music
  • 6.2.1. Tempo and Time Signature
  • 6.2.2. Note Value
  • 6.3. Onset Detection
  • 6.3.1. Novelty Function
  • 6.3.2. Peak Picking
  • 6.3.3. Evaluation
  • 6.4. Beat Histogram
  • 6.4.1. Beat Histogram Features
  • 6.5. Detection of Tempo and Beat Phase
  • 6.6. Detection of Meter and Downbeat
  • 7.1. Dynamic Time Warping
  • 7.1.1. Example
  • 7.1.2.Common Variants
  • 7.1.3. Optimizations
  • 7.2. Audio-to-Audio Alignment
  • 7.2.1. Ground Truth Data for Evaluation
  • 7.3. Audio-to-Score Alignment
  • 7.3.1. Real-Time Systems M
  • 7.3.2. Non-Real-Time Systems.
  • Contents note continued: 8.1. Musical Genre Classification
  • 8.1.1. Musical Genre
  • 8.1.2. Feature Extraction
  • 8.1.3. Classification
  • 8.2. Related Research Fields
  • 8.2.1. Music Similarity Detection
  • 8.2.2. Mood Classification
  • 8.2.3. Instrument Recognition
  • 9.1. Fingerprint Extraction
  • 9.2. Fingerprint Matching
  • 9.3. Fingerprinting System: Example
  • 10.1. Musical Communication
  • 10.1.1. Score
  • 10.1.2. Music Performance
  • 10.1.3. Production
  • 10.1.4. Recipient
  • 10.2. Music Performance Analysis
  • 10.2.1. Analysis Data
  • 10.2.2. Research Results
  • A.1. Identity
  • A.2.Commutativity
  • A.3. Associativity
  • A.4. Distributivity
  • A.5. Circularity
  • B.1. Properties of the Fourier Transformation
  • B.1.1. Inverse Fourier Transform
  • B.1.2. Superposition
  • B.1.3. Convolution and Multiplication
  • B.1.4. Parseval's Theorem
  • B.1.5. Time and Frequency Shift
  • B.1.6. Symmetry
  • B.1.7. Time and Frequency Scaling
  • B.1.8. Derivatives
  • B.2. Spectrum of Example Time Domain Signals.
  • Contents note continued: B.2.1. Delta Function
  • B.2.2. Constant
  • B.2.3. Cosine
  • B.2.4. Rectangular Window
  • B.2.5. Delta Pulse
  • B.3. Transformation of Sampled Time Signals
  • B.4. Short Time Fourier Transform of Continuous Signals
  • B.4.1. Window Functions
  • B.5. Discrete Fourier Transform
  • B.5.1. Window Functions
  • B.5.2. Fast Fourier Transform
  • C.1.Computation of the Transformation Matrix
  • C.2. Interpretation of the Transformation Matrix
  • D.1. Software Frameworks and Applications
  • D.1.1. Marsyas
  • D.1.2. CLAM
  • D.1.3.jMIR
  • D.1.4.CoMIRVA
  • D.1.5. Sonic Visualiser
  • D.2. Software Libraries and Toolboxes
  • D.2.1. Feature Extraction
  • D.2.2. Plugin Interfaces
  • D.2.3. Other Software.