An introduction to audio content analysis : applications in signal processing and music informatics /
"With the proliferation of digital audio distribution over digital media, audio content analysis is fast becoming a requirement for designers of intelligent signal-adaptive audio processing systems. Written by a well-known expert in the field, this book provides quick access to different analys...
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Hoboken, N.J. :
Wiley,
[2012]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1.1. Audio Content
- 1.2.A Generalized Audio Content Analysis System
- 2.1. Audio Signals
- 2.1.1. Periodic Signals
- 2.1.2. Random Signals
- 2.1.3. Sampling and Quantization
- 2.1.4. Statistical Signal Description
- 2.2. Signal Processing
- 2.2.1. Convolution
- 2.2.2. Block-Based Processing
- 2.2.3. Fourier Transform
- 2.2.4. Constant Q Transform
- 2.2.5. Auditory Filterbanks
- 2.2.6. Correlation Function
- 2.2.7. Linear Prediction
- 3.1. Audio Pre-Processing
- 3.1.1. Down-Mixing
- 3.1.2. DC Removal
- 3.1.3. Normalization
- 3.1.4. Down-Sampling
- 3.1.5. Other Pre-Processing Options
- 3.2. Statistical Properties
- 3.2.1. Arithmetic Mean
- 3.2.2. Geometric Mean
- 3.2.3. Harmonic Mean
- 3.2.4. Generalized Mean
- 3.2.5. Centroid
- 3.2.6. Variance and Standard Deviation
- 3.2.7. Skewness
- 3.2.8. Kurtosis
- 3.2.9. Generalized Central Moments
- 3.2.10. Quantiles and Quantile Ranges
- 3.3. Spectral Shape
- 3.3.1. Spectral Rolloff.
- Contents note continued: 3.3.2. Spectral Flux
- 3.3.3. Spectral Centroid
- 3.3.4. Spectral Spread
- 3.3.5. Spectral Decrease
- 3.3.6. Spectral Slope
- 3.3.7. Mel Frequency Cepstral Coefficients
- 3.4. Signal Properties
- 3.4.1. Tonalness
- 3.4.2. Autocorrelation Coefficients
- 3.4.3. Zero Crossing Rate
- 3.5. Feature Post-Processing
- 3.5.1. Derived Features
- 3.5.2. Normalization and Mapping
- 3.5.3. Subfeatures
- 3.5.4. Feature Dimensionality Reduction
- 4.1. Human Perception of Intensity and Loudness
- 4.2. Representation of Dynamics in Music
- 4.3. Features
- 4.3.1. Root Mean Square
- 4.4. Peak Envelope
- 4.5. Psycho-Acoustic Loudness Features
- 4.5.1. EBU R128
- 5.1. Human Perception of Pitch
- 5.1.1. Pitch Scales
- 5.1.2. Chroma Perception
- 5.2. Representation of Pitch in Music
- 5.2.1. Pitch Classes and Names
- 5.2.2. Intervals
- 5.2.3. Root Note, Mode, and Key
- 5.2.4. Chords and Harmony
- 5.2.5. The Frequency of Musical Pitch
- 5.3. Fundamental Frequency Detection.
- Contents note continued: 5.3.1. Detection Accuracy
- 5.3.2. Pre-Processing
- 5.3.3. Monophonic Input Signals
- 5.3.4. Polyphonic Input Signals
- 5.4. Tuning Frequency Estimation
- 5.5. Key Detection
- 5.5.1. Pitch Chroma
- 5.5.2. Key Recognition
- 5.6. Chord Recognition
- 6.1. Human Perception of Temporal Events
- 6.1.1. Onsets
- 6.1.2. Tempo and Meter
- 6.1.3. Rhythm
- 6.1.4. Timing
- 6.2. Representation of Temporal Events in Music
- 6.2.1. Tempo and Time Signature
- 6.2.2. Note Value
- 6.3. Onset Detection
- 6.3.1. Novelty Function
- 6.3.2. Peak Picking
- 6.3.3. Evaluation
- 6.4. Beat Histogram
- 6.4.1. Beat Histogram Features
- 6.5. Detection of Tempo and Beat Phase
- 6.6. Detection of Meter and Downbeat
- 7.1. Dynamic Time Warping
- 7.1.1. Example
- 7.1.2.Common Variants
- 7.1.3. Optimizations
- 7.2. Audio-to-Audio Alignment
- 7.2.1. Ground Truth Data for Evaluation
- 7.3. Audio-to-Score Alignment
- 7.3.1. Real-Time Systems M
- 7.3.2. Non-Real-Time Systems.
- Contents note continued: 8.1. Musical Genre Classification
- 8.1.1. Musical Genre
- 8.1.2. Feature Extraction
- 8.1.3. Classification
- 8.2. Related Research Fields
- 8.2.1. Music Similarity Detection
- 8.2.2. Mood Classification
- 8.2.3. Instrument Recognition
- 9.1. Fingerprint Extraction
- 9.2. Fingerprint Matching
- 9.3. Fingerprinting System: Example
- 10.1. Musical Communication
- 10.1.1. Score
- 10.1.2. Music Performance
- 10.1.3. Production
- 10.1.4. Recipient
- 10.2. Music Performance Analysis
- 10.2.1. Analysis Data
- 10.2.2. Research Results
- A.1. Identity
- A.2.Commutativity
- A.3. Associativity
- A.4. Distributivity
- A.5. Circularity
- B.1. Properties of the Fourier Transformation
- B.1.1. Inverse Fourier Transform
- B.1.2. Superposition
- B.1.3. Convolution and Multiplication
- B.1.4. Parseval's Theorem
- B.1.5. Time and Frequency Shift
- B.1.6. Symmetry
- B.1.7. Time and Frequency Scaling
- B.1.8. Derivatives
- B.2. Spectrum of Example Time Domain Signals.
- Contents note continued: B.2.1. Delta Function
- B.2.2. Constant
- B.2.3. Cosine
- B.2.4. Rectangular Window
- B.2.5. Delta Pulse
- B.3. Transformation of Sampled Time Signals
- B.4. Short Time Fourier Transform of Continuous Signals
- B.4.1. Window Functions
- B.5. Discrete Fourier Transform
- B.5.1. Window Functions
- B.5.2. Fast Fourier Transform
- C.1.Computation of the Transformation Matrix
- C.2. Interpretation of the Transformation Matrix
- D.1. Software Frameworks and Applications
- D.1.1. Marsyas
- D.1.2. CLAM
- D.1.3.jMIR
- D.1.4.CoMIRVA
- D.1.5. Sonic Visualiser
- D.2. Software Libraries and Toolboxes
- D.2.1. Feature Extraction
- D.2.2. Plugin Interfaces
- D.2.3. Other Software.