Lipidomics technologies and applications /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Ekroos, Kim
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim : Wiley-VCH, [2012]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 12284nam a2200697 4500
001 ocn820108157
003 OCoLC
005 20170124072043.5
006 m o d
007 cr cn|||||||||
008 121016s2012 gw a ob 001 0 eng
040 |a AU@  |b eng  |c AU@  |d OCLCO  |d UIU  |d DG1  |d YDXCP  |d N$T  |d E7B  |d IDEBK  |d COO  |d DEBSZ  |d HEBIS  |d UKDOC  |d OCLCO  |d UV0  |d OCLCQ  |d OCLCO  |d GrThAP 
015 |a GBB2A8071  |2 bnb 
019 |a 828868870  |a 847508380 
020 |a 9783527655946 (electronic bk.) 
020 |a 3527655948 (electronic bk.) 
020 |z 3527330984 
020 |z 9783527330980 
020 |a 9783527655977 (electronic bk.) 
020 |a 3527655972 (electronic bk.) 
020 |z 9783527655960 
020 |z 3527655964 
020 |z 9783527655953 
020 |z 3527655956 
020 |a 9781299178762 (MyiLibrary) 
020 |a 1299178766 (MyiLibrary) 
024 7 |a 10.1002/9783527655946  |2 doi 
029 0 |a AU@  |b 000050207240 
029 1 |a NZ1  |b 14971788 
029 1 |a DEBSZ  |b 397688687 
029 1 |a AU@  |b 000051452717 
029 1 |a DEBBG  |b BV041911200 
029 1 |a GBVCP  |b 790199971 
029 1 |a DEBBG  |b BV041829479 
035 |a (OCoLC)820108157  |z (OCoLC)828868870  |z (OCoLC)847508380 
050 4 |a QP751  |b .L57 2012 
060 1 4 |a 2013 A-045 
060 1 4 |a QY 465 
072 7 |a SCI  |x 007000  |2 bisacsh 
082 0 4 |a 572.57  |2 23 
049 |a MAIN 
245 0 0 |a Lipidomics  |h [electronic resource] :  |b technologies and applications /  |c edited by Kim Ekroos. 
264 1 |a Weinheim :  |b Wiley-VCH,  |c [2012] 
264 4 |c ©2012 
300 |a 1 online resource :  |b ill. 
504 |a Includes bibliographical references and index. 
505 0 |a Machine generated contents note: 1.Lipidomics Perspective: From Molecular Lipidomics to Validated Clinical Diagnostics / Kim Ekroos -- 1.1.Introduction -- 1.2.Hierarchical Categorization of the Analytical Lipid Outputs -- 1.2.1.Lipid Class -- 1.2.2.Sum Compositions -- 1.2.3.Molecular Lipids -- 1.2.4.Structurally Defined Molecular Lipids -- 1.3.The Type of Lipid Information Delivers Different Biological Knowledge -- 1.4.Untying New Biological Evidences through Molecular Lipidomic Applications -- 1.5.Molecular Lipidomics Approaches Clinical Diagnostics -- 1.6.Current Roadblocks in Lipidomics -- 1.7.Conclusions -- References -- 2.Lipids in Cells / Michal Surma -- 2.1.Introduction -- 2.2.Basis of Cellular Lipid Distribution -- 2.3.Lipid Distribution by Nonvesicular Routes -- 2.4.Lipids in Different Cell Types -- 2.5.Functional Implications of Membrane Lipid Composition -- 2.6.Outlook: Collectives and Phase Separation -- References -- 3.High-Throughput Molecular Lipidomics / Kim Ekroos -- 3.1.Introduction -- 3.2.Lipid Diversity -- 3.3.Function of Molecular Lipids -- 3.4.Automated Sample Preparation -- 3.5.Different Approaches to Molecular Lipidomics -- 3.5.1.Untargeted versus Targeted Approaches -- 3.5.2.Shotgun Lipidomics -- 3.5.3.Analytical Validation of the Shotgun Approach -- 3.5.4.Targeted LC-MS Lipidomics -- 3.6.Data Processing and Evaluation -- 3.7.Lipidomic Workflows -- 3.8.Conclusions and Future Perspectives -- References -- 4.Multidimensional Mass Spectrometry-Based Shotgun Lipidomics / Xianlin Han -- 4.1.Introduction -- 4.2.Multidimensional Mass Spectrometry-Based Shotgun Lipidomics -- 4.2.1.Intrasource Separation -- 4.2.2.The Principle of Multidimensional Mass Spectrometry -- 4.2.3.Variables in Multidimensional Mass Spectrometry -- 4.2.3.1.Variables in Fragment Monitoring by Tandem MS Scans -- 4.2.3.2.Variables Related to the Infusion Conditions -- 4.2.3.3.Variables under Ionization Conditions -- 4.2.3.4.Variables under Collision Conditions -- 4.2.3.5.Variables Related to the Sample Preparations -- 4.3.Application of Multidimensional Mass Spectrometry-Based Shotgun Lipidomics for Lipidomic Analysis -- 4.3.1.Identification of Lipid Molecular Species by 2D Mass Spectrometry -- 4.3.1.1.Identification of Anionic Lipids -- 4.3.1.2.Identification of Weakly Anionic Lipids -- 4.3.1.3.Identification of Charge Neutral but Polar Lipids -- 4.3.1.4.Identification of Sphingolipids -- 4.3.1.5.The Concerns of the MDMS-Based Shotgun Lipidomics for Identification of Lipid Species -- 4.3.2.Quantification of Lipid Molecular Species by MDMS-Based Shotgun Lipidomics -- 4.3.2.1.The Principle of Quantification of Individual Lipid Species by MS -- 4.3.2.2.Quantification by Using a Two-Step Procedure in MDMS-Based Shotgun Lipidomics -- 4.3.2.3.Quantitative Analysis of PEX7 Mouse Brain Lipidome by MDMS-Based Shotgun Lipidomics -- 4.4.Conclusions -- References -- 5.Targeted Lipidomics: Sphingolipidomics / M. Cameron Sullards -- 5.1.Introduction -- 5.2.Sphingolipids Description and Nomenclature -- 5.3.Sphingolipids Analysis via Targeted LC-MS/MS -- 5.3.1.Sphingolipid Internal Standards -- 5.3.2.Biological Sample Preparation and Storage -- 5.3.3.Sphingolipid Extraction Protocol -- 5.3.4.Liquid Chromatography -- 5.3.4.1.LCBs and Cer1P -- 5.3.4.2.Cer, HexCer, LacCer, SM, ST, and Cer1P -- 5.3.4.3.Separation of GlcCer and GalCer -- 5.3.5.Mass Spectrometry -- 5.3.5.1.Electrospray Ionization -- 5.3.5.2.Tandem Mass Spectrometry -- 5.3.5.3.Multiple Reaction Monitoring -- 5.3.6.Generation of Standard Curves -- 5.3.7.Data Analysis -- 5.3.8.Quality Control -- 5.4.Applications of Sphingolipidomics in Biology and Disease -- 5.4.1.LC-MS/MS -- 5.4.2.Transcriptomic Guided Tissue Imaging Mass Spectrometry -- 5.5.Conclusions -- References -- 6.Structural Lipidomics / Stephen J. Blanksby -- 6.1.Introduction -- 6.2.Lipid Structure -- 6.3.Structural Analysis of Lipids by Mass Spectrometry -- 6.4.sn Position -- 6.5.Double Bond Position -- 6.5.1.Untargeted Fragmentation -- 6.5.2.Targeted Fragmentation -- 6.6.Double Bond Stereochemistry -- 6.7.Conclusions -- References -- 7.Imaging Lipids in Tissues by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry / Robert C. Murphy -- 7.1.Introduction -- 7.2.Sample Preparation -- 7.3.Matrix -- 7.3.1.Techniques for Matrix Application -- 7.3.2.Matrix Compounds -- 7.4.Instrumentation -- 7.4.1.Lasers and Rastering -- 7.4.2.Ion Formation -- 7.4.3.Mass Analyzers and Ion Detection -- 7.5.Data Processing -- 7.6.Conclusions -- References -- 8.Lipid Informatics: From a Mass Spectrum to Interactomics / Kirill Tarasov -- 8.1.Introduction -- 8.2.Lipid Nomenclature -- 8.3.Basic Properties of Lipid Mass spectrometric Data -- 8.3.1.Mass Spectrum -- 8.3.2.Mass Accuracy and Reproducibility -- 8.3.3.Isotopes, Deisotoping, and Isotope Correction -- 8.4.Data Processing -- 8.4.1.De Novo Lipid Identification -- 8.4.2.Targeted Export of Lipidomic Data -- 8.4.3.Normalization of lipidomic Data -- 8.5.Lipidomic Data Mining and Visualization -- 8.5.1.Comparative Lipidomics -- 8.5.2.Multivariate Data Analysis -- 8.5.3.Lipidomics in Biomarker Research -- 8.6.Lipidomic Data Integration -- 8.7.Conclusions and Future Perspectives -- References -- 9.Lipids in Human Diseases / Scott A.  
505 0 |a Summers -- 9.1.Introduction -- 9.2.Obesity -- 9.3.Dyslipidemia -- 9.4.Diabetes -- 9.5.Cardiovascular Disorders -- 9.6.Hereditary Sensory Neuropathy -- 9.7.Neurodegeneration -- 9.8.Cancer -- 9.9.Lysosomal Storage Disorders -- 9.10.Cystic Fibrosis -- 9.11.Anti-Inflammatory Lipid Mediators -- 9.12.Conclusions -- References -- 10.Lipidomics in Lipoprotein Biology / Anatol Kontush -- 10.1.Introduction -- 10.2.Metabolism of Lipoproteins -- 10.3.Lipoproteinomics in Normolipidemic Subjects -- 10.3.1.Phospholipids -- 10.3.1.1.Phosphatidylcholine -- 10.3.1.2.Lysophosphatidylcholine -- 10.3.1.3.Phosphatidylethanolamine -- 10.3.1.4.Phosphatidylethanolamine Plasmalogens -- 10.3.1.5.Phosphatidylinositol, Phosphatidylserine, Phosphatidylglycerol, and Phosphatidic Acid -- 10.3.1.6.Cardiolipin -- 10.3.1.7.Isoprostane-Containing PC -- 10.3.2.Sphingolipids -- 10.3.2.1.Sphingomyelin -- 10.3.2.2.Lysosphingolipids -- 10.3.2.3.Ceramide -- 10.3.2.4.Minor Sphingolipids -- 10.3.3.Sterols -- 10.3.4.Cholesteryl Esters -- 10.3.5.Triacylglycerides -- 10.3.6.Minor Lipids -- 10.4.Altered Lipoproteinomics in Dyslipidemia -- 10.4.1.Phospholipids -- 10.4.1.1.Phosphatidylcholine -- 10.4.1.2.Lysophosphatidylcholine -- 10.4.1.3.Phosphatidylethanolamine -- 10.4.1.4.Phosphatidylethanolamine Plasmalogens -- 10.4.1.5.Phosphatidylinositol -- 10.4.1.6.Isoprostane-Containing PC -- 10.4.2.Sphingolipids -- 10.4.2.1.Sphingomyelin -- 10.4.2.2.Lysosphingolipids: S1P and Dihydro S1P -- 10.4.2.3.Ceramide -- 10.4.3.Free Cholesterol -- 10.4.4.Cholesteryl Esters -- 10.4.5.Triacylglycerides -- 10.4.6.Minor Lipids -- 10.4.6.1.Nonesterified Fatty Acids -- 10.4.6.2.Ganglioside GM1 -- 10.4.6.3.Oxidized Lipids -- 10.5.Conclusions -- References -- 11.Mediator Lipidomics in Inflammation Research / Yosuke Isobe -- 11.1.Introduction -- 11.2.PUFA-Derived Lipid Mediators: Formation and Action -- 11.3.LC-ESI-MS/MS-Based Lipidomics -- 11.3.1.Sample Preparation -- 11.3.2.LC-ESI-MS/MS Analysis -- 11.4.Mediator Lipidomics in Inflammation and Resolution -- 11.5.Conclusion and Future Perspective -- References -- 12.Lipidomics for Elucidation of Metabolic Syndrome and Related Lipid Metabolic Disorder / Hiroki Nakanishi -- 12.1.Introduction -- 12.2.Basic Strategy of Lipidomics for Elucidating Metabolic Changes of Lipids at the Level of their Molecular Species in Metabolic Syndrome and Related Diseases -- 12.3.Analytical Systems by Mass Spectrometry in Lipidomics -- 12.3.1.LC-MS and LC-MS/MS Analyses for Global Detection of Phospholipids and Triglycerides -- 12.3.2.Infusion Analysis with Precursor Ion and Neutral Loss Scanning -- 12.3.3.Targeted Analysis by Multiple Reaction Monitoring for Oxidized Lipids and Lipid Mediators by LC-MS/MS on Triple-Stage Quadrupole Mass Spectrometers -- 12.4.Lipidomic Data Processing -- 12.4.1.Strategy of Lipid Search -- 12.4.2.Application and Identification Results of "Lipid Search" -- 12.5.Analysis of Lipids as Markers of Metabolic Syndrome -- 12.5.1.Oxidized Phospholipids -- 12.5.1.1.Application for Myocardial Ischemia-Reperfusion Model -- 12.5.2.Bioactive Acidic Phospholipids -- 12.5.2.1.Lysophosphatidic Acid -- 12.5.2.2.Phosphoinositides -- 12.5.3.Oxidative Triglycerides -- 12.5.3.1.Application for Mouse White Adipose Tissue -- 12.5.4.Sphingolipids -- 12.5.4.1.Application for Sphinogolipid Metabolism -- 12.6.Direct Detection of Lipid Molecular Species in Specific Tissue Domains by Disease-Specific Changes -- 12.7.Conclusions -- References -- 13.Lipidomics in Atherosclerotic Vascular Disease / Reijo Laaksonen -- 13.1.Introduction -- 13.2.Lipids and Atherosclerotic Vascular Disease -- 13.2.1.Lipoproteins -- 13.2.2.Atherosclerotic Plaque -- 13.2.3.Molecular Lipids -- 13.2.3.1.Eicosanoids -- 13.2.3.2.Sphingolipids and Cholesterol -- 13.2.3.3.Phospholipids -- 13.2.4.Animal Models of Atherosclerotic Research -- 13.3.Diagnostics and Treatment -- 13.3.1.Diagnostic Biomarkers of Atherosclerosis -- 13.3.2.Lipidomics in Efficacy and Safety Measurements -- 13.4.Conclusions -- References -- 14.Lipid Metabolism in Neurodegenerative Diseases / Markus R. Wenk -- 14.1.Introduction -- 14.1.1.Brain Lipids -- 14.1.2.Mass Spectrometry of Brain Lipids -- 14.2.Alzheimer's Disease -- 14.2.1.Cholesterol and Cholesterol Esters -- 14.2.2.Sulfatides -- 14.2.3.Plasmalogen Ethanolamines -- 14.2.4.Phospholipases -- 14.2.4.1.Phospholipase A2 -- 14.2.4.2.Phospholipase C and Phospholipase D -- 14.3.Parkinson's Disease -- 14.3.1.Cerebrosides -- 14.3.2.Coenzyme Q -- 14.3.3.Endocannabinoids -- 14.4.Conclusions -- References -- 15.The Tumor Mitochondrial Lipidome and Respiratory Bioenergetic Insufficiency / Michael A. Kiebish -- 15.1.Introduction -- 15.1.1.Lipidomic Abnormalities in Tumor Mitochondria -- 
650 0 |a Biochemical markers  |x Diagnostic use. 
650 0 |a Lipids  |x Analysis. 
650 1 2 |a Lipids  |x analysis. 
650 2 2 |a Biomarkers  |x analysis. 
650 2 2 |a Lipid Metabolism. 
650 7 |a SCIENCE / Life Sciences / Biochemistry  |2 bisacsh 
650 7 |0 (DE-588)1027486754  |0 (DE-603)311803636  |a Lipidomik  |2 gnd 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
700 1 |a Ekroos, Kim. 
776 0 8 |i Print version:  |t Lipidomics.  |d Weinheim : Wiley-VCH, c2012  |z 9783527330980  |w (OCoLC)827775093 
856 4 0 |u https://doi.org/10.1002/9783527655946  |z Full Text via HEAL-Link 
994 |a 92  |b DG1