Lipidomics technologies and applications /
Άλλοι συγγραφείς: | |
---|---|
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Weinheim :
Wiley-VCH,
[2012]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1.Lipidomics Perspective: From Molecular Lipidomics to Validated Clinical Diagnostics / Kim Ekroos
- 1.1.Introduction
- 1.2.Hierarchical Categorization of the Analytical Lipid Outputs
- 1.2.1.Lipid Class
- 1.2.2.Sum Compositions
- 1.2.3.Molecular Lipids
- 1.2.4.Structurally Defined Molecular Lipids
- 1.3.The Type of Lipid Information Delivers Different Biological Knowledge
- 1.4.Untying New Biological Evidences through Molecular Lipidomic Applications
- 1.5.Molecular Lipidomics Approaches Clinical Diagnostics
- 1.6.Current Roadblocks in Lipidomics
- 1.7.Conclusions
- References
- 2.Lipids in Cells / Michal Surma
- 2.1.Introduction
- 2.2.Basis of Cellular Lipid Distribution
- 2.3.Lipid Distribution by Nonvesicular Routes
- 2.4.Lipids in Different Cell Types
- 2.5.Functional Implications of Membrane Lipid Composition
- 2.6.Outlook: Collectives and Phase Separation
- References
- 3.High-Throughput Molecular Lipidomics / Kim Ekroos
- 3.1.Introduction
- 3.2.Lipid Diversity
- 3.3.Function of Molecular Lipids
- 3.4.Automated Sample Preparation
- 3.5.Different Approaches to Molecular Lipidomics
- 3.5.1.Untargeted versus Targeted Approaches
- 3.5.2.Shotgun Lipidomics
- 3.5.3.Analytical Validation of the Shotgun Approach
- 3.5.4.Targeted LC-MS Lipidomics
- 3.6.Data Processing and Evaluation
- 3.7.Lipidomic Workflows
- 3.8.Conclusions and Future Perspectives
- References
- 4.Multidimensional Mass Spectrometry-Based Shotgun Lipidomics / Xianlin Han
- 4.1.Introduction
- 4.2.Multidimensional Mass Spectrometry-Based Shotgun Lipidomics
- 4.2.1.Intrasource Separation
- 4.2.2.The Principle of Multidimensional Mass Spectrometry
- 4.2.3.Variables in Multidimensional Mass Spectrometry
- 4.2.3.1.Variables in Fragment Monitoring by Tandem MS Scans
- 4.2.3.2.Variables Related to the Infusion Conditions
- 4.2.3.3.Variables under Ionization Conditions
- 4.2.3.4.Variables under Collision Conditions
- 4.2.3.5.Variables Related to the Sample Preparations
- 4.3.Application of Multidimensional Mass Spectrometry-Based Shotgun Lipidomics for Lipidomic Analysis
- 4.3.1.Identification of Lipid Molecular Species by 2D Mass Spectrometry
- 4.3.1.1.Identification of Anionic Lipids
- 4.3.1.2.Identification of Weakly Anionic Lipids
- 4.3.1.3.Identification of Charge Neutral but Polar Lipids
- 4.3.1.4.Identification of Sphingolipids
- 4.3.1.5.The Concerns of the MDMS-Based Shotgun Lipidomics for Identification of Lipid Species
- 4.3.2.Quantification of Lipid Molecular Species by MDMS-Based Shotgun Lipidomics
- 4.3.2.1.The Principle of Quantification of Individual Lipid Species by MS
- 4.3.2.2.Quantification by Using a Two-Step Procedure in MDMS-Based Shotgun Lipidomics
- 4.3.2.3.Quantitative Analysis of PEX7 Mouse Brain Lipidome by MDMS-Based Shotgun Lipidomics
- 4.4.Conclusions
- References
- 5.Targeted Lipidomics: Sphingolipidomics / M. Cameron Sullards
- 5.1.Introduction
- 5.2.Sphingolipids Description and Nomenclature
- 5.3.Sphingolipids Analysis via Targeted LC-MS/MS
- 5.3.1.Sphingolipid Internal Standards
- 5.3.2.Biological Sample Preparation and Storage
- 5.3.3.Sphingolipid Extraction Protocol
- 5.3.4.Liquid Chromatography
- 5.3.4.1.LCBs and Cer1P
- 5.3.4.2.Cer, HexCer, LacCer, SM, ST, and Cer1P
- 5.3.4.3.Separation of GlcCer and GalCer
- 5.3.5.Mass Spectrometry
- 5.3.5.1.Electrospray Ionization
- 5.3.5.2.Tandem Mass Spectrometry
- 5.3.5.3.Multiple Reaction Monitoring
- 5.3.6.Generation of Standard Curves
- 5.3.7.Data Analysis
- 5.3.8.Quality Control
- 5.4.Applications of Sphingolipidomics in Biology and Disease
- 5.4.1.LC-MS/MS
- 5.4.2.Transcriptomic Guided Tissue Imaging Mass Spectrometry
- 5.5.Conclusions
- References
- 6.Structural Lipidomics / Stephen J. Blanksby
- 6.1.Introduction
- 6.2.Lipid Structure
- 6.3.Structural Analysis of Lipids by Mass Spectrometry
- 6.4.sn Position
- 6.5.Double Bond Position
- 6.5.1.Untargeted Fragmentation
- 6.5.2.Targeted Fragmentation
- 6.6.Double Bond Stereochemistry
- 6.7.Conclusions
- References
- 7.Imaging Lipids in Tissues by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry / Robert C. Murphy
- 7.1.Introduction
- 7.2.Sample Preparation
- 7.3.Matrix
- 7.3.1.Techniques for Matrix Application
- 7.3.2.Matrix Compounds
- 7.4.Instrumentation
- 7.4.1.Lasers and Rastering
- 7.4.2.Ion Formation
- 7.4.3.Mass Analyzers and Ion Detection
- 7.5.Data Processing
- 7.6.Conclusions
- References
- 8.Lipid Informatics: From a Mass Spectrum to Interactomics / Kirill Tarasov
- 8.1.Introduction
- 8.2.Lipid Nomenclature
- 8.3.Basic Properties of Lipid Mass spectrometric Data
- 8.3.1.Mass Spectrum
- 8.3.2.Mass Accuracy and Reproducibility
- 8.3.3.Isotopes, Deisotoping, and Isotope Correction
- 8.4.Data Processing
- 8.4.1.De Novo Lipid Identification
- 8.4.2.Targeted Export of Lipidomic Data
- 8.4.3.Normalization of lipidomic Data
- 8.5.Lipidomic Data Mining and Visualization
- 8.5.1.Comparative Lipidomics
- 8.5.2.Multivariate Data Analysis
- 8.5.3.Lipidomics in Biomarker Research
- 8.6.Lipidomic Data Integration
- 8.7.Conclusions and Future Perspectives
- References
- 9.Lipids in Human Diseases / Scott A.
- Summers
- 9.1.Introduction
- 9.2.Obesity
- 9.3.Dyslipidemia
- 9.4.Diabetes
- 9.5.Cardiovascular Disorders
- 9.6.Hereditary Sensory Neuropathy
- 9.7.Neurodegeneration
- 9.8.Cancer
- 9.9.Lysosomal Storage Disorders
- 9.10.Cystic Fibrosis
- 9.11.Anti-Inflammatory Lipid Mediators
- 9.12.Conclusions
- References
- 10.Lipidomics in Lipoprotein Biology / Anatol Kontush
- 10.1.Introduction
- 10.2.Metabolism of Lipoproteins
- 10.3.Lipoproteinomics in Normolipidemic Subjects
- 10.3.1.Phospholipids
- 10.3.1.1.Phosphatidylcholine
- 10.3.1.2.Lysophosphatidylcholine
- 10.3.1.3.Phosphatidylethanolamine
- 10.3.1.4.Phosphatidylethanolamine Plasmalogens
- 10.3.1.5.Phosphatidylinositol, Phosphatidylserine, Phosphatidylglycerol, and Phosphatidic Acid
- 10.3.1.6.Cardiolipin
- 10.3.1.7.Isoprostane-Containing PC
- 10.3.2.Sphingolipids
- 10.3.2.1.Sphingomyelin
- 10.3.2.2.Lysosphingolipids
- 10.3.2.3.Ceramide
- 10.3.2.4.Minor Sphingolipids
- 10.3.3.Sterols
- 10.3.4.Cholesteryl Esters
- 10.3.5.Triacylglycerides
- 10.3.6.Minor Lipids
- 10.4.Altered Lipoproteinomics in Dyslipidemia
- 10.4.1.Phospholipids
- 10.4.1.1.Phosphatidylcholine
- 10.4.1.2.Lysophosphatidylcholine
- 10.4.1.3.Phosphatidylethanolamine
- 10.4.1.4.Phosphatidylethanolamine Plasmalogens
- 10.4.1.5.Phosphatidylinositol
- 10.4.1.6.Isoprostane-Containing PC
- 10.4.2.Sphingolipids
- 10.4.2.1.Sphingomyelin
- 10.4.2.2.Lysosphingolipids: S1P and Dihydro S1P
- 10.4.2.3.Ceramide
- 10.4.3.Free Cholesterol
- 10.4.4.Cholesteryl Esters
- 10.4.5.Triacylglycerides
- 10.4.6.Minor Lipids
- 10.4.6.1.Nonesterified Fatty Acids
- 10.4.6.2.Ganglioside GM1
- 10.4.6.3.Oxidized Lipids
- 10.5.Conclusions
- References
- 11.Mediator Lipidomics in Inflammation Research / Yosuke Isobe
- 11.1.Introduction
- 11.2.PUFA-Derived Lipid Mediators: Formation and Action
- 11.3.LC-ESI-MS/MS-Based Lipidomics
- 11.3.1.Sample Preparation
- 11.3.2.LC-ESI-MS/MS Analysis
- 11.4.Mediator Lipidomics in Inflammation and Resolution
- 11.5.Conclusion and Future Perspective
- References
- 12.Lipidomics for Elucidation of Metabolic Syndrome and Related Lipid Metabolic Disorder / Hiroki Nakanishi
- 12.1.Introduction
- 12.2.Basic Strategy of Lipidomics for Elucidating Metabolic Changes of Lipids at the Level of their Molecular Species in Metabolic Syndrome and Related Diseases
- 12.3.Analytical Systems by Mass Spectrometry in Lipidomics
- 12.3.1.LC-MS and LC-MS/MS Analyses for Global Detection of Phospholipids and Triglycerides
- 12.3.2.Infusion Analysis with Precursor Ion and Neutral Loss Scanning
- 12.3.3.Targeted Analysis by Multiple Reaction Monitoring for Oxidized Lipids and Lipid Mediators by LC-MS/MS on Triple-Stage Quadrupole Mass Spectrometers
- 12.4.Lipidomic Data Processing
- 12.4.1.Strategy of Lipid Search
- 12.4.2.Application and Identification Results of "Lipid Search"
- 12.5.Analysis of Lipids as Markers of Metabolic Syndrome
- 12.5.1.Oxidized Phospholipids
- 12.5.1.1.Application for Myocardial Ischemia-Reperfusion Model
- 12.5.2.Bioactive Acidic Phospholipids
- 12.5.2.1.Lysophosphatidic Acid
- 12.5.2.2.Phosphoinositides
- 12.5.3.Oxidative Triglycerides
- 12.5.3.1.Application for Mouse White Adipose Tissue
- 12.5.4.Sphingolipids
- 12.5.4.1.Application for Sphinogolipid Metabolism
- 12.6.Direct Detection of Lipid Molecular Species in Specific Tissue Domains by Disease-Specific Changes
- 12.7.Conclusions
- References
- 13.Lipidomics in Atherosclerotic Vascular Disease / Reijo Laaksonen
- 13.1.Introduction
- 13.2.Lipids and Atherosclerotic Vascular Disease
- 13.2.1.Lipoproteins
- 13.2.2.Atherosclerotic Plaque
- 13.2.3.Molecular Lipids
- 13.2.3.1.Eicosanoids
- 13.2.3.2.Sphingolipids and Cholesterol
- 13.2.3.3.Phospholipids
- 13.2.4.Animal Models of Atherosclerotic Research
- 13.3.Diagnostics and Treatment
- 13.3.1.Diagnostic Biomarkers of Atherosclerosis
- 13.3.2.Lipidomics in Efficacy and Safety Measurements
- 13.4.Conclusions
- References
- 14.Lipid Metabolism in Neurodegenerative Diseases / Markus R. Wenk
- 14.1.Introduction
- 14.1.1.Brain Lipids
- 14.1.2.Mass Spectrometry of Brain Lipids
- 14.2.Alzheimer's Disease
- 14.2.1.Cholesterol and Cholesterol Esters
- 14.2.2.Sulfatides
- 14.2.3.Plasmalogen Ethanolamines
- 14.2.4.Phospholipases
- 14.2.4.1.Phospholipase A2
- 14.2.4.2.Phospholipase C and Phospholipase D
- 14.3.Parkinson's Disease
- 14.3.1.Cerebrosides
- 14.3.2.Coenzyme Q
- 14.3.3.Endocannabinoids
- 14.4.Conclusions
- References
- 15.The Tumor Mitochondrial Lipidome and Respiratory Bioenergetic Insufficiency / Michael A. Kiebish
- 15.1.Introduction
- 15.1.1.Lipidomic Abnormalities in Tumor Mitochondria