Lipidomics technologies and applications /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Ekroos, Kim
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim : Wiley-VCH, [2012]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: 1.Lipidomics Perspective: From Molecular Lipidomics to Validated Clinical Diagnostics / Kim Ekroos
  • 1.1.Introduction
  • 1.2.Hierarchical Categorization of the Analytical Lipid Outputs
  • 1.2.1.Lipid Class
  • 1.2.2.Sum Compositions
  • 1.2.3.Molecular Lipids
  • 1.2.4.Structurally Defined Molecular Lipids
  • 1.3.The Type of Lipid Information Delivers Different Biological Knowledge
  • 1.4.Untying New Biological Evidences through Molecular Lipidomic Applications
  • 1.5.Molecular Lipidomics Approaches Clinical Diagnostics
  • 1.6.Current Roadblocks in Lipidomics
  • 1.7.Conclusions
  • References
  • 2.Lipids in Cells / Michal Surma
  • 2.1.Introduction
  • 2.2.Basis of Cellular Lipid Distribution
  • 2.3.Lipid Distribution by Nonvesicular Routes
  • 2.4.Lipids in Different Cell Types
  • 2.5.Functional Implications of Membrane Lipid Composition
  • 2.6.Outlook: Collectives and Phase Separation
  • References
  • 3.High-Throughput Molecular Lipidomics / Kim Ekroos
  • 3.1.Introduction
  • 3.2.Lipid Diversity
  • 3.3.Function of Molecular Lipids
  • 3.4.Automated Sample Preparation
  • 3.5.Different Approaches to Molecular Lipidomics
  • 3.5.1.Untargeted versus Targeted Approaches
  • 3.5.2.Shotgun Lipidomics
  • 3.5.3.Analytical Validation of the Shotgun Approach
  • 3.5.4.Targeted LC-MS Lipidomics
  • 3.6.Data Processing and Evaluation
  • 3.7.Lipidomic Workflows
  • 3.8.Conclusions and Future Perspectives
  • References
  • 4.Multidimensional Mass Spectrometry-Based Shotgun Lipidomics / Xianlin Han
  • 4.1.Introduction
  • 4.2.Multidimensional Mass Spectrometry-Based Shotgun Lipidomics
  • 4.2.1.Intrasource Separation
  • 4.2.2.The Principle of Multidimensional Mass Spectrometry
  • 4.2.3.Variables in Multidimensional Mass Spectrometry
  • 4.2.3.1.Variables in Fragment Monitoring by Tandem MS Scans
  • 4.2.3.2.Variables Related to the Infusion Conditions
  • 4.2.3.3.Variables under Ionization Conditions
  • 4.2.3.4.Variables under Collision Conditions
  • 4.2.3.5.Variables Related to the Sample Preparations
  • 4.3.Application of Multidimensional Mass Spectrometry-Based Shotgun Lipidomics for Lipidomic Analysis
  • 4.3.1.Identification of Lipid Molecular Species by 2D Mass Spectrometry
  • 4.3.1.1.Identification of Anionic Lipids
  • 4.3.1.2.Identification of Weakly Anionic Lipids
  • 4.3.1.3.Identification of Charge Neutral but Polar Lipids
  • 4.3.1.4.Identification of Sphingolipids
  • 4.3.1.5.The Concerns of the MDMS-Based Shotgun Lipidomics for Identification of Lipid Species
  • 4.3.2.Quantification of Lipid Molecular Species by MDMS-Based Shotgun Lipidomics
  • 4.3.2.1.The Principle of Quantification of Individual Lipid Species by MS
  • 4.3.2.2.Quantification by Using a Two-Step Procedure in MDMS-Based Shotgun Lipidomics
  • 4.3.2.3.Quantitative Analysis of PEX7 Mouse Brain Lipidome by MDMS-Based Shotgun Lipidomics
  • 4.4.Conclusions
  • References
  • 5.Targeted Lipidomics: Sphingolipidomics / M. Cameron Sullards
  • 5.1.Introduction
  • 5.2.Sphingolipids Description and Nomenclature
  • 5.3.Sphingolipids Analysis via Targeted LC-MS/MS
  • 5.3.1.Sphingolipid Internal Standards
  • 5.3.2.Biological Sample Preparation and Storage
  • 5.3.3.Sphingolipid Extraction Protocol
  • 5.3.4.Liquid Chromatography
  • 5.3.4.1.LCBs and Cer1P
  • 5.3.4.2.Cer, HexCer, LacCer, SM, ST, and Cer1P
  • 5.3.4.3.Separation of GlcCer and GalCer
  • 5.3.5.Mass Spectrometry
  • 5.3.5.1.Electrospray Ionization
  • 5.3.5.2.Tandem Mass Spectrometry
  • 5.3.5.3.Multiple Reaction Monitoring
  • 5.3.6.Generation of Standard Curves
  • 5.3.7.Data Analysis
  • 5.3.8.Quality Control
  • 5.4.Applications of Sphingolipidomics in Biology and Disease
  • 5.4.1.LC-MS/MS
  • 5.4.2.Transcriptomic Guided Tissue Imaging Mass Spectrometry
  • 5.5.Conclusions
  • References
  • 6.Structural Lipidomics / Stephen J. Blanksby
  • 6.1.Introduction
  • 6.2.Lipid Structure
  • 6.3.Structural Analysis of Lipids by Mass Spectrometry
  • 6.4.sn Position
  • 6.5.Double Bond Position
  • 6.5.1.Untargeted Fragmentation
  • 6.5.2.Targeted Fragmentation
  • 6.6.Double Bond Stereochemistry
  • 6.7.Conclusions
  • References
  • 7.Imaging Lipids in Tissues by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry / Robert C. Murphy
  • 7.1.Introduction
  • 7.2.Sample Preparation
  • 7.3.Matrix
  • 7.3.1.Techniques for Matrix Application
  • 7.3.2.Matrix Compounds
  • 7.4.Instrumentation
  • 7.4.1.Lasers and Rastering
  • 7.4.2.Ion Formation
  • 7.4.3.Mass Analyzers and Ion Detection
  • 7.5.Data Processing
  • 7.6.Conclusions
  • References
  • 8.Lipid Informatics: From a Mass Spectrum to Interactomics / Kirill Tarasov
  • 8.1.Introduction
  • 8.2.Lipid Nomenclature
  • 8.3.Basic Properties of Lipid Mass spectrometric Data
  • 8.3.1.Mass Spectrum
  • 8.3.2.Mass Accuracy and Reproducibility
  • 8.3.3.Isotopes, Deisotoping, and Isotope Correction
  • 8.4.Data Processing
  • 8.4.1.De Novo Lipid Identification
  • 8.4.2.Targeted Export of Lipidomic Data
  • 8.4.3.Normalization of lipidomic Data
  • 8.5.Lipidomic Data Mining and Visualization
  • 8.5.1.Comparative Lipidomics
  • 8.5.2.Multivariate Data Analysis
  • 8.5.3.Lipidomics in Biomarker Research
  • 8.6.Lipidomic Data Integration
  • 8.7.Conclusions and Future Perspectives
  • References
  • 9.Lipids in Human Diseases / Scott A.
  • Summers
  • 9.1.Introduction
  • 9.2.Obesity
  • 9.3.Dyslipidemia
  • 9.4.Diabetes
  • 9.5.Cardiovascular Disorders
  • 9.6.Hereditary Sensory Neuropathy
  • 9.7.Neurodegeneration
  • 9.8.Cancer
  • 9.9.Lysosomal Storage Disorders
  • 9.10.Cystic Fibrosis
  • 9.11.Anti-Inflammatory Lipid Mediators
  • 9.12.Conclusions
  • References
  • 10.Lipidomics in Lipoprotein Biology / Anatol Kontush
  • 10.1.Introduction
  • 10.2.Metabolism of Lipoproteins
  • 10.3.Lipoproteinomics in Normolipidemic Subjects
  • 10.3.1.Phospholipids
  • 10.3.1.1.Phosphatidylcholine
  • 10.3.1.2.Lysophosphatidylcholine
  • 10.3.1.3.Phosphatidylethanolamine
  • 10.3.1.4.Phosphatidylethanolamine Plasmalogens
  • 10.3.1.5.Phosphatidylinositol, Phosphatidylserine, Phosphatidylglycerol, and Phosphatidic Acid
  • 10.3.1.6.Cardiolipin
  • 10.3.1.7.Isoprostane-Containing PC
  • 10.3.2.Sphingolipids
  • 10.3.2.1.Sphingomyelin
  • 10.3.2.2.Lysosphingolipids
  • 10.3.2.3.Ceramide
  • 10.3.2.4.Minor Sphingolipids
  • 10.3.3.Sterols
  • 10.3.4.Cholesteryl Esters
  • 10.3.5.Triacylglycerides
  • 10.3.6.Minor Lipids
  • 10.4.Altered Lipoproteinomics in Dyslipidemia
  • 10.4.1.Phospholipids
  • 10.4.1.1.Phosphatidylcholine
  • 10.4.1.2.Lysophosphatidylcholine
  • 10.4.1.3.Phosphatidylethanolamine
  • 10.4.1.4.Phosphatidylethanolamine Plasmalogens
  • 10.4.1.5.Phosphatidylinositol
  • 10.4.1.6.Isoprostane-Containing PC
  • 10.4.2.Sphingolipids
  • 10.4.2.1.Sphingomyelin
  • 10.4.2.2.Lysosphingolipids: S1P and Dihydro S1P
  • 10.4.2.3.Ceramide
  • 10.4.3.Free Cholesterol
  • 10.4.4.Cholesteryl Esters
  • 10.4.5.Triacylglycerides
  • 10.4.6.Minor Lipids
  • 10.4.6.1.Nonesterified Fatty Acids
  • 10.4.6.2.Ganglioside GM1
  • 10.4.6.3.Oxidized Lipids
  • 10.5.Conclusions
  • References
  • 11.Mediator Lipidomics in Inflammation Research / Yosuke Isobe
  • 11.1.Introduction
  • 11.2.PUFA-Derived Lipid Mediators: Formation and Action
  • 11.3.LC-ESI-MS/MS-Based Lipidomics
  • 11.3.1.Sample Preparation
  • 11.3.2.LC-ESI-MS/MS Analysis
  • 11.4.Mediator Lipidomics in Inflammation and Resolution
  • 11.5.Conclusion and Future Perspective
  • References
  • 12.Lipidomics for Elucidation of Metabolic Syndrome and Related Lipid Metabolic Disorder / Hiroki Nakanishi
  • 12.1.Introduction
  • 12.2.Basic Strategy of Lipidomics for Elucidating Metabolic Changes of Lipids at the Level of their Molecular Species in Metabolic Syndrome and Related Diseases
  • 12.3.Analytical Systems by Mass Spectrometry in Lipidomics
  • 12.3.1.LC-MS and LC-MS/MS Analyses for Global Detection of Phospholipids and Triglycerides
  • 12.3.2.Infusion Analysis with Precursor Ion and Neutral Loss Scanning
  • 12.3.3.Targeted Analysis by Multiple Reaction Monitoring for Oxidized Lipids and Lipid Mediators by LC-MS/MS on Triple-Stage Quadrupole Mass Spectrometers
  • 12.4.Lipidomic Data Processing
  • 12.4.1.Strategy of Lipid Search
  • 12.4.2.Application and Identification Results of "Lipid Search"
  • 12.5.Analysis of Lipids as Markers of Metabolic Syndrome
  • 12.5.1.Oxidized Phospholipids
  • 12.5.1.1.Application for Myocardial Ischemia-Reperfusion Model
  • 12.5.2.Bioactive Acidic Phospholipids
  • 12.5.2.1.Lysophosphatidic Acid
  • 12.5.2.2.Phosphoinositides
  • 12.5.3.Oxidative Triglycerides
  • 12.5.3.1.Application for Mouse White Adipose Tissue
  • 12.5.4.Sphingolipids
  • 12.5.4.1.Application for Sphinogolipid Metabolism
  • 12.6.Direct Detection of Lipid Molecular Species in Specific Tissue Domains by Disease-Specific Changes
  • 12.7.Conclusions
  • References
  • 13.Lipidomics in Atherosclerotic Vascular Disease / Reijo Laaksonen
  • 13.1.Introduction
  • 13.2.Lipids and Atherosclerotic Vascular Disease
  • 13.2.1.Lipoproteins
  • 13.2.2.Atherosclerotic Plaque
  • 13.2.3.Molecular Lipids
  • 13.2.3.1.Eicosanoids
  • 13.2.3.2.Sphingolipids and Cholesterol
  • 13.2.3.3.Phospholipids
  • 13.2.4.Animal Models of Atherosclerotic Research
  • 13.3.Diagnostics and Treatment
  • 13.3.1.Diagnostic Biomarkers of Atherosclerosis
  • 13.3.2.Lipidomics in Efficacy and Safety Measurements
  • 13.4.Conclusions
  • References
  • 14.Lipid Metabolism in Neurodegenerative Diseases / Markus R. Wenk
  • 14.1.Introduction
  • 14.1.1.Brain Lipids
  • 14.1.2.Mass Spectrometry of Brain Lipids
  • 14.2.Alzheimer's Disease
  • 14.2.1.Cholesterol and Cholesterol Esters
  • 14.2.2.Sulfatides
  • 14.2.3.Plasmalogen Ethanolamines
  • 14.2.4.Phospholipases
  • 14.2.4.1.Phospholipase A2
  • 14.2.4.2.Phospholipase C and Phospholipase D
  • 14.3.Parkinson's Disease
  • 14.3.1.Cerebrosides
  • 14.3.2.Coenzyme Q
  • 14.3.3.Endocannabinoids
  • 14.4.Conclusions
  • References
  • 15.The Tumor Mitochondrial Lipidome and Respiratory Bioenergetic Insufficiency / Michael A. Kiebish
  • 15.1.Introduction
  • 15.1.1.Lipidomic Abnormalities in Tumor Mitochondria