Chemical Engineering for Renewables Conversion /

Biomass has received considerable attention as a sustainable feedstock that can replace diminishing fossil fuels for the production of energy and chemicals. At the present moment in the oil refining, petrochemical and chemical industry, after fractionation of crude oil, various fractions are upgrade...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Murzin, Dmitry, 1963- (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Amsterdam ; Boston : Elsevier/Academic Press, 2013.
Σειρά:Advances in chemical engineering ; v. 42.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Front Cover; Chemical Engineering for Renewables Conversion; Copyright; Contents; Contributors; Preface; Chapter One: Engineering Aspects of Bioethanol Synthesis; 1. Introduction; 2. Polysaccharides: Potent Raw Materials for Bioethanol Production; 2.1. Cellulose; 2.2. Heteropolysaccharides; 2.3. Mannans; 2.4. Xylans; 2.5. Arabinogalactans; 2.6. Pectins; 2.7. Starch; 2.8. Chitin; 3. Monosaccharides (Monomeric Sugars); 4. Sugar Analysis; 5. Production of Ethanol from Renewable Feedstocks; 6. Cellulosic Ethanol; 7. Historical and Current Considerations Around Cellulosic Bioethanol.
  • 8. Thermodynamic Analysis of Ethanol Production from Biomass8.1. Energy and exergy balances; 8.1.1. Physical exergy; 8.1.2. Chemical exergy; 8.1.3. Exergy of mixing; 8.2. Example of exergy analysis; 9. Biofilm Reactors for Bioethanol Production; 9.1. Packed bed reactor; 9.2. Continuous stirred tank reactor; 9.3. Fluidized bed reactors; 10. Kinetic Analysis of Bioethanol Production; 10.1. Kinetic models for bioethanol production; 10.2. Model development; 10.2.1. Batch systems; 10.2.2. Continuous stirred tank reactor; 11. Biomass-to-Liquid Ethanol Production from Synthesis Gas.
  • 12. Bioethanol Valorization over Inorganic Heterogeneous Catalysts: Classical Liquid and Gaseous Products12.1. Acetaldehyde; 12.2. Acetic acid; 12.3. 1-Butanol; 12.4. Diethyl ether; 12.5. Diethoxy ethane; 12.6. Ethyl acetate; 12.7. Ethylene; 12.8. Hydrogen; 12.9. Diethyl carbonate; 12.10. Other products; 13. Summary and Conclusions; Acknowledgments; References; Chapter Two: Biomass Pyrolysis; 1. Introduction; 2. Thermochemical Conversion of Biomass; 3. Pyrolysis Reactions; 3.1. Reaction kinetics; 3.2. Reaction models; 3.2.1. Global one-step model; 3.2.2. Competitive reaction models.
  • 3.2.3. Pseudocomponent models3.3. Heat transfer and heat of reaction; 3.4. Mass transfer; 3.5. Catalysis; 4. Feed Properties Relevant to Reactor Design; 4.1. Biological constituent content; 4.2. Moisture content; 4.3. Ash content; 4.4. Morphology; 5. Product Specifications Relevant to Reactor Design; 5.1. Noncondensable gases; 5.2. Bio-oil; 5.2.1. Fuel oil; 5.2.2. Transportation fuel; 5.2.3. Chemicals; 5.3. Char; 5.3.1. Charcoal; 5.3.2. Torrefied biomass; 5.3.3. Activated carbon; 5.3.4. Biochar; 6. Process Variables Relevant to Reactor Design; 6.1. Reactor temperature; 6.2. Reactor pressure.
  • 6.3. Heating rate6.4. Biomass residence time; 6.5. Vapor residence time; 6.6. Biomass conveying, mixing, and hydrodynamics; 6.7. Feed preparation; 6.8. Product handling; 7. Reactor Technology Development; 7.1. Fast pyrolysis reactors; 7.1.1. Entrained down-flow reactor; 7.1.2. Ablative reactor; 7.1.3. Fluidized bed reactor; 7.1.4. Vacuum moving bed reactor; 7.1.5. Screw reactor; 7.1.6. Rotating cone reactor; 7.2. Slow pyrolysis reactors; 7.2.1. Kilns; 7.2.2. Retorts; 7.3. Torrefaction reactors; 7.3.1. Screw reactors; 7.3.2. Multiple/rotary hearth furnaces; 7.3.3. Belt conveyor furnaces.