Log-linear modeling : concepts, interpretation, and application /

"Over the past ten years, there have been many important advances in log-linear modeling, including the specification of new models, in particular non-standard models, and their relationships to methods such as Rasch modeling. While most literature on the topic is contained in volumes aimed at...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Eye, Alexander von
Άλλοι συγγραφείς: Mun, Eun Young
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : Wiley, [2013]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05444nam a2200685 4500
001 ocn825767800
003 OCoLC
005 20170124071718.9
006 m o d
007 cr cnu---unuuu
008 130129s2013 njua ob s001 0 eng d
010 |z  2012009791 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d DG1  |d CDX  |d COO  |d E7B  |d IDEBK  |d OCLCF  |d OCLCQ  |d AU@  |d RECBK  |d OCLCQ  |d DEBBG  |d AZK  |d LOA  |d GrThAP 
019 |a 825108798  |a 880899818  |a 904962018  |a 961515771  |a 962633530  |a 966147403 
020 |a 9781118391747  |q (electronic bk.) 
020 |a 1118391748  |q (electronic bk.) 
020 |a 9781118391778  |q (electronic bk.) 
020 |a 1118391772  |q (electronic bk.) 
020 |a 9781283977968  |q (MyiLibrary) 
020 |a 1283977966  |q (MyiLibrary) 
020 |z 9781118146408 
020 |z 1118146409 
029 1 |a AU@  |b 000050591347 
029 1 |a AU@  |b 000052911995 
029 1 |a CHNEW  |b 000723521 
029 1 |a DEBBG  |b BV041069180 
029 1 |a DEBBG  |b BV041905736 
029 1 |a DKDLA  |b 820120-katalog:000600501 
029 1 |a NLGGC  |b 356732495 
029 1 |a NZ1  |b 14976982 
029 1 |a DEBBG  |b BV043395327 
035 |a (OCoLC)825767800  |z (OCoLC)825108798  |z (OCoLC)880899818  |z (OCoLC)904962018  |z (OCoLC)961515771  |z (OCoLC)962633530  |z (OCoLC)966147403 
050 4 |a QA278  |b .E95 2013eb 
072 7 |a MAT  |x 029030  |2 bisacsh 
082 0 4 |a 519.5/36  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a MAIN 
100 1 |a Eye, Alexander von. 
245 1 0 |a Log-linear modeling :  |b concepts, interpretation, and application /  |c Alexander von Eye, Michigan State University, Department of Psychology, East Lansing, MI, Eun-Young Mun, Rutgers, the State University of New Jersey, Center for Alcohol Studies, Piscataway, New Jersey. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c [2013] 
300 |a 1 online resource (xv, 450 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
520 |a "Over the past ten years, there have been many important advances in log-linear modeling, including the specification of new models, in particular non-standard models, and their relationships to methods such as Rasch modeling. While most literature on the topic is contained in volumes aimed at advanced statisticians, Applied Log-Linear Modeling presents the topic in an accessible style that is customized for applied researchers who utilize log-linear modeling in the social sciences. The book begins by providing readers with a foundation on the basics of log-linear modeling, introducing decomposing effects in cross-tabulations and goodness-of-fit tests. Popular hierarchical log-linear models are illustrated using empirical data examples, and odds ratio analysis is discussed as an interesting method of analysis of cross-tabulations. Next, readers are introduced to the design matrix approach to log-linear modeling, presenting various forms of coding (effects coding, dummy coding, Helmert contrasts etc.) and the characteristics of design matrices. The book goes on to explore non-hierarchical and nonstandard log-linear models, outlining ten nonstandard log-linear models (including nonstandard nested models, models with quantitative factors, logit models, and log-linear Rasch models) as well as special topics and applications. A brief discussion of sampling schemes is also provided along with a selection of useful methods of chi-square decomposition. Additional topics of coverage include models of marginal homogeneity, rater agreement, methods to test hypotheses about differences in associations across subgroup, the relationship between log-linear modeling to logistic regression, and reduced designs. Throughout the book, Computer Applications chapters feature SYSTAT, Lem, and R illustrations of the previous chapter's material, utilizing empirical data examples to demonstrate the relevance of the topics in modern research"--  |c Provided by publisher. 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a Basics of Hierarchical Log-Linear Models -- Effects in a Table -- Goodness-of-Fit -- Hierarchical Log-Linear Models and Odds Ratio Analysis -- Computations I: Basic Log-Linear Modeling -- The Design Matrix Approach -- Parameter Interpretation and Significance Tests -- Computations II: Design Matrices and Poisson GLM -- Nonhierarchical and Nonstandard Log-Linear Models -- Computations III: Nonstandard Models -- Sampling Schemes and Chi-Square Decomposition -- Symmetry Models -- Log-Linear Models of Rater Agreement -- Comparing Associations in Subtables: Homogeneity of Associations -- Logistic Regression and Other Logit Models -- Reduced Designs -- Computations IV: Additional Models. 
650 0 |a Log-linear models. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Regression Analysis.  |2 bisacsh 
650 7 |a Log-linear models.  |2 fast  |0 (OCoLC)fst01001918 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
700 1 |a Mun, Eun Young. 
776 0 8 |i Print version:  |a Eye, Alexander von.  |t Log-linear modeling.  |d Hoboken, New Jersey : Wiley, [2013]  |z 9781118146408  |w (DLC) 2012009791  |w (OCoLC)779259318 
856 4 0 |u https://doi.org/10.1002/9781118391778  |z Full Text via HEAL-Link 
994 |a 92  |b DG1