Laser velocimetry in fluid mechanics /
In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes. Laser velocimetry is an optical technique for velocity measurements; i...
Άλλοι συγγραφείς: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Iste ;
2012.
Hoboken, NJ : Wiley, 2012. |
Σειρά: | Waves series.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Cover; Laser Velocimetry in Fluid Mechanics; Title Page; Copyright Page; Table of Contents; Preface; Introduction; Chapter 1. Measurement Needs in Fluid Mechanics; 1.1. Navier-Stokes equations; 1.2. Similarity parameters; 1.3. Scale notion; 1.4. Equations for turbulent flows and for Reynolds stress tensor; 1.5. Spatial-temporal correlations; 1.6. Turbulence models; 1.6.1. Zero equation model; 1.6.2. One equation model; 1.6.3. Two equations model; 1.6.4. Reynolds stress models (RSM, ARSM); 1.7. Conclusion; 1.8. Bibliography; Chapter 2. Classification of Laser Velocimetry Techniques.
- 2.1. Generalities2.2. Definitions and vocabulary; 2.3. Specificities of LDV; 2.3.1. Advantages; 2.3.2. Use limitations; 2.4. Application domain of laser velocimeters (LDV, PIV, DGV); 2.5. Velocity measurements based on interactions with molecules; 2.5.1. Excitation by electron beams; 2.5.2. Laser fluorescence; 2.5.3. Spectroscopy with a tunable laser diode in the infrared; 2.5.4. Coherent anti-Stokes Raman scattering technique; 2.5.5. Tagging techniques; 2.5.6. Summary; 2.6. Bibliography; Chapter 3. Laser Doppler Velocimetry; 3.1. Introduction; 3.2. Basic idea: Doppler effect.
- 3.2.1. Double Doppler effect3.2.2. Four optical set-ups; 3.2.3. Comments on the four configurations; 3.3. Fringe velocimetry theory; 3.3.1. Fringe pattern in probe volume; 3.3.2. Interferometry theory; 3.3.3. Comparison between the three theoretical approaches; 3.3.4. SNR; 3.4. Velocity sign measurement; 3.4.1. Problem origin; 3.4.2. Solution explanation; 3.4.3. Various means to shift a laser beam frequency; 3.5. Emitting and receiving optics; 3.5.1. Emitting; 3.5.2. Probe volume characteristics; 3.5.3. Receiving part; 3.6. General organigram of a mono-dimensional fringe velocimeter.
- 3.7. Necessity for simultaneous measurement of 2 or 3 velocity components3.8. 2D laser velocimetry; 3.9. 3D laser velocimetry; 3.9.1. Exotic 3D laser velocimeters; 3.9.2. 3D fringe laser velocimetry; 3.9.3. Five-beam 3D laser velocimeters; 3.9.4. Six-beam 3D laser velocimeters; 3.10. Electronic processing of Doppler signal; 3.10.1. Generalities and main classes of Doppler processors; 3.10.2. Photon converter: photomultiplier; 3.10.3. Doppler burst detection; 3.10.4. First processing units; 3.10.5. Digital processing units; 3.10.6. Exotic techniques; 3.10.7. Optimization of signal processing.
- 3.11. Measurement accuracy in laser velocimetry3.11.1. Probe volume influence; 3.11.2. Calibration; 3.11.3. Doppler signal quality; 3.11.4. Velocity domain for measurements; 3.11.5. Synthesis of various bias and error sources; 3.11.6. Specific problems in 2D and 3D devices; 3.11.7. Global accuracy; 3.12. Specific laser velocimeters for specific applications; 3.12.1. Optical fibers in fringe laser velocimetry; 3.12.2. Miniature laser velocimeters; 3.12.3. Doppler image of velocity field; 3.13. Bibliography; Chapter 4. Optical Barrier Velocimetry; 4.1. Laser two-focus velocimeter.