Mechanics of Solid Interfaces.
The growing occurrence of heterogeneous materials such as composites or coated substrates in structural parts makes it necessary for designers and scientists to deal with the specific features of the mechanical behavior of solid interfaces. This book introduces basic concepts on mechanical problems...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Wiley,
2012.
|
Σειρά: | ISTE.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Cover; Title Page; Copyright Page; Table of Contents; Foreword; PART 1. FUNDAMENTALS; Chapter 1. Interfaces: the Physics, Chemistry and Mechanics of Heterogeneous Continua; 1.1. Definition and terminology; 1.2. Energy considerations; 1.3. Elastic behavior of an interface; 1.3.1. Flat interface; 1.3.2. Effects of elastic coupling; 1.3.3. Ellipsoidal elastic inclusion; 1.4. Experimental stress analysis techniques; 1.4.1. Digital image correlation; 1.4.2. Incremental hole-drilling method; 1.4.3. X-ray diffraction; 1.4.4. Numerical modeling; 1.5. Conclusion; 1.6. Bibliography.
- Chapter 2. Structure and Defects of Crystalline Interfaces2.1. What is a crystalline interface?; 2.2. Definitions and geometric tools to describe interfaces; 2.2.1. Formation of an interface; 2.2.2. Coincidence lattice; 2.2.3. Translation lattice of the bicrystal; 2.3. Structure of interfaces: intrinsic dislocations and structural units; 2.3.1. Continuous approach to strain at the interface; 2.3.2. First discrete approach: Read and Shockley model; 2.3.3. Extension of the discrete approach to any grain boundary: Bollmann's model.
- 2.3.4. Intrinsic dislocations and atomic-level description of interfaces2.4. Linear interface defects: extrinsic dislocations; 2.5. Interaction between dislocations and interfaces: relaxation of interfacial stresses; 2.5.1. Slip transmission processes across an interface; 2.5.2. Relaxation processes in the interface; 2.5.3. Interfacial dislocation stress fields; 2.5.4. Evolution of stress fields over time; 2.6. Conclusion; 2.7. Bibliography; PART 2. SINGULARITIES, NOTCHES AND INTERFACIAL CRACKS; Chapter 3. Singularities and Interfacial Cracks; 3.1. Introduction; 3.2. Singularities.
- 3.2.1. A generic case
- the V-notch3.2.2. Calculation of the GSIFs; 3.2.3. The case of interfaces: complex singularities; 3.2.4. A particular case; 3.3. Modal mixity; 3.4. Brittle fracture mechanics; 3.4.1. The Griffith criterion; 3.4.2. Kinking of a crack out of the interface; 3.5. Nucleation of cracks; 3.5.1. Energy condition; 3.5.2 Stress condition; 3.5.3. The nucleation criterion; 3.6. Deflection of a crack at an interface; 3.6.1. Weak singularity; 3.6.2. Strong singularity; 3.7. Conclusion; 3.8. Bibliography; Chapter 4. Interface Adherence; 4.1. Adhesion and adherence; 4.2. Mode mixity.
- 4.3. Measurement of adherence4.3.1. Grid method; 4.3.2. Pull test; 4.3.3. Tape peel test; 4.3.4. Peel test; 4.3.5. Bulge-and-blister test; 4.3.6. Indentation methods (normal and transverse); 4.3.7. Wedge test; 4.3.8. Four-point bending; 4.4. Conclusion: choosing a test; 4.5. Bibliography; PART 3. PRACTICAL APPLICATIONS; Chapter 5. Controlling Adherence; 5.1. Introduction; 5.2. Multiscale adherence modeling; 5.3. Nature and control of interface bonds; 5.3.1. Elimination of barriers to adhesion; 5.3.2. Modification of interface chemistry; 5.3.3. Reactivity and joining; 5.3.4. Conclusion.