Electromagnetism : Maxwell equations, wave propagation and emission /
This book deals with electromagnetic theory and its applications at the level of a senior-level undergraduate course for science and engineering. The basic concepts and mathematical analysis are clearly developed and the important applications are analyzed. Each chapter contains numerous problems ra...
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
ISTE ;
2012.
Hoboken, NJ : Wiley, 2012. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Cover; Electromagnetism; Title Page; Copyright Page; Table of Contents; Preface; List of Symbols; Chapter 1. Prologue; 1.1. Scalars and vectors; 1.2. Effect of rotations on scalars and vectors; 1.3. Integrals involving vectors; 1.4. Gradient and curl, conservative field and scalar potential; 1.5. Divergence, conservative flux, and vector potential; 1.6. Other properties of the vector differential operator; 1.7. Invariance and physical laws; 1.8. Electric charges in nature; 1.9. Interactions in nature; 1.10. Problems; Chapter 2. Electrostatics in Vacuum; 2.1. Electric forces and field.
- 2.2. Electric energy and potential2.3. The two fundamental laws of electrostatics; 2.4. Poisson's equation and its solutions; 2.5. Symmetries of the electric field and potential; 2.6. Electric dipole; 2.7. Electric field and potential of simple charge configurations; 2.8. Some general properties of the electric field and potential; 2.9. Electrostatic energy of a system of charges; 2.10. Electrostatic binding energy of ionic crystals and atomic nuclei; 2.11. Interaction-at-a-distance and local interaction; 2.12. Problems; Chapter 3. Conductors and Currents; 3.1. Conductors in equilibrium.
- 3.2. Conductors with cavities, electric shielding3.3. Capacitors; 3.4. Mutual electric influence of conductors; 3.5. Electric forces between conductors; 3.6. Currents and current densities; 3.7. Classical model of conduction, Ohm's law and the Joule effect; 3.8. Resistance of conductors; 3.9. Variation of resistivity with temperature, superconductivity; 3.10. Band theory of conduction, semiconductors; 3.11. Electric circuits; 3.12. Problems; Chapter 4. Dielectrics; 4.1. Effects of dielectric on capacitors; 4.2. Polarization of dielectrics; 4.3. Microscopic interpretation of polarization.
- 4.4. Polarization charges in dielectric4.5. Potential and field of polarized dielectrics; 4.6. Gauss's law in the case of dielectrics, electric displacement; 4.7. Electrostatic equations in dielectrics; 4.8. Field and potential of permanent dielectrics; 4.9. Polarization of a dielectric in an external field; 4.10. Energy and force in dielectrics; 4.11. Action of an electric field on a polarized medium; 4.12. Electric susceptibility and permittivity; 4.13. Variation of polarization with temperature; 4.14. Nonlinear dielectrics and non-isotropic dielectrics; 4.15. Problems.
- Chapter 5. Special Techniques and Approximation Methods5.1. Unicity of the solution; 5.2. Method of images; 5.3. Method of analytic functions; 5.4. Method of separation of variables; 5.5. Laplace's equation in Cartesian coordinates; 5.6. Laplace's equation in spherical coordinates; 5.7. Laplace's equation in cylindrical coordinates; 5.8. Multipole expansion; 5.9. Other methods; 5.10. Problems; Chapter 6. Magnetic Field in Vacuum; 6.1. Force exerted by a magnetic field on a moving charge; 6.2. Force exerted by a magnetic field on a current, Laplace's force.