Computational Statistics.

This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization, Integration and Simulation, Bootstrapping, Density Estimation and Smoothing. Within these sections, each c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Givens, Geof H.
Άλλοι συγγραφείς: Hoeting, Jennifer A. (Jennifer Ann), 1966-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chicester : Wiley, 2012.
Έκδοση:2nd ed.
Σειρά:Wiley series in computational statistics.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05592nam a2200637 4500
001 ocn827207941
003 OCoLC
005 20170124071029.9
006 m o d
007 cr cnu---unuuu
008 130211s2012 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d OCLCQ  |d OCLCO  |d YDXCP  |d DG1  |d OHI  |d OCLCF  |d UKDOC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d DEBBG  |d GrThAP 
020 |a 9781118555286  |q (electronic bk.) 
020 |a 1118555287  |q (electronic bk.) 
020 |a 9781118555552  |q (electronic bk.) 
020 |a 1118555554  |q (electronic bk.) 
029 1 |a AU@  |b 000051629276 
029 1 |a CHBIS  |b 010026754 
029 1 |a CHVBK  |b 306230836 
029 1 |a DEBSZ  |b 431330956 
029 1 |a GBVCP  |b 79020648X 
029 1 |a NZ1  |b 15915387 
029 1 |a DEBBG  |b BV043395376 
035 |a (OCoLC)827207941 
050 4 |a QA276 .G384 2012 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.50285 
049 |a MAIN 
100 1 |a Givens, Geof H. 
245 1 0 |a Computational Statistics. 
250 |a 2nd ed. 
264 1 |a Chicester :  |b Wiley,  |c 2012. 
300 |a 1 online resource (491 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wiley Series in Computational Statistics 
505 0 |a COMPUTATIONAL STATISTICS; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1 REVIEW; 1.1 Mathematical Notation; 1.2 Taylor's Theorem and Mathematical Limit Theory; 1.3 Statistical Notation and Probability Distributions; 1.4 Likelihood Inference; 1.5 Bayesian Inference; 1.6 Statistical Limit Theory; 1.7 Markov Chains; 1.8 Computing; PART I: OPTIMIZATION; 2 OPTIMIZATION AND SOLVING NONLINEAR EQUATIONS; 2.1 Univariate Problems; 2.1.1 Newton's Method; 2.1.1.1 Convergence Order; 2.1.2 Fisher Scoring; 2.1.3 Secant Method; 2.1.4 Fixed-Point Iteration; 2.1.4.1 Scaling; 2.2 Multivariate Problems. 
505 8 |a 2.2.1 Newton's Method and Fisher Scoring; 2.2.1.1 Iteratively Reweighted Least Squares; 2.2.2 Newton-Like Methods; 2.2.2.1 Ascent Algorithms; 2.2.2.2 Discrete Newton and Fixed-Point Methods; 2.2.2.3 Quasi-Newton Methods; 2.2.3 Gauss-Newton Method; 2.2.4 Nelder-Mead Algorithm; 2.2.5 Nonlinear Gauss-Seidel Iteration; Problems; 3 COMBINATORIAL OPTIMIZATION; 3.1 Hard Problems and NP-Completeness; 3.1.1 Examples; 3.1.2 Need for Heuristics; 3.2 Local Search; 3.3 Simulated Annealing; 3.3.1 Practical Issues; 3.3.1.1 Neighborhoods and Proposals; 3.3.1.2 Cooling Schedule and Convergence. 
505 8 |a 3.3.2 Enhancements; 3.4 Genetic Algorithms; 3.4.1 Definitions and the Canonical Algorithm; 3.4.1.1 Basic Definitions; 3.4.1.2 Selection Mechanisms and Genetic Operators; 3.4.1.3 Allele Alphabets and Genotypic Representation; 3.4.1.4 Initialization, Termination, and Parameter Values; 3.4.2 Variations; 3.4.2.1 Fitness; 3.4.2.2 Selection Mechanisms and Updating Generations; 3.4.2.3 Genetic Operators and Permutation Chromosomes; 3.4.3 Initialization and Parameter Values; 3.4.4 Convergence; 3.5 Tabu Algorithms; 3.5.1 Basic Definitions; 3.5.2 The Tabu List; 3.5.3 Aspiration Criteria. 
505 8 |a 3.5.4 Diversification; 3.5.5 Intensification; 3.5.6 Comprehensive Tabu Algorithm; Problems; 4 EM OPTIMIZATION METHODS; 4.1 Missing Data, Marginalization, and Notation; 4.2 The EM Algorithm; 4.2.1 Convergence; 4.2.2 Usage in Exponential Families; 4.2.3 Variance Estimation; 4.2.3.1 Louis's Method; 4.2.3.2 SEM Algorithm; 4.2.3.3 Bootstrapping; 4.2.3.4 Empirical Information; 4.2.3.5 Numerical Differentiation; 4.3 EM Variants; 4.3.1 Improving the E Step; 4.3.1.1 Monte Carlo EM; 4.3.2 Improving the M Step; 4.3.2.1 ECM Algorithm; 4.3.2.2 EM Gradient Algorithm; 4.3.3 Acceleration Methods. 
505 8 |a 4.3.3.1 Aitken Acceleration; 4.3.3.2 Quasi-Newton Acceleration; Problems; PART II: INTEGRATION AND SIMULATION; 5 NUMERICAL INTEGRATION; 5.1 Newton-Côtes Quadrature; 5.1.1 Riemann Rule; 5.1.2 Trapezoidal Rule; 5.1.3 Simpson's Rule; 5.1.4 General kth-Degree Rule; 5.2 Romberg Integration; 5.3 Gaussian Quadrature; 5.3.1 Orthogonal Polynomials; 5.3.2 The Gaussian Quadrature Rule; 5.4 Frequently Encountered Problems; 5.4.1 Range of Integration; 5.4.2 Integrands with Singularities or Other Extreme Behavior; 5.4.3 Multiple Integrals; 5.4.4 Adaptive Quadrature; 5.4.5 Software for Exact Integration Problems. 
520 |a This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization, Integration and Simulation, Bootstrapping, Density Estimation and Smoothing. Within these sections, each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics. 
588 0 |a Print version record. 
650 0 |a Mathematical statistics  |x Data processing. 
650 4 |a Computational statistics. 
650 4 |a Probabilities  |x Data processing. 
650 4 |a Statistics  |x Data processing. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematical statistics  |x Data processing.  |2 fast  |0 (OCoLC)fst01012133 
655 4 |a Electronic books. 
700 1 |a Hoeting, Jennifer A.  |q (Jennifer Ann),  |d 1966- 
776 0 8 |i Print version:  |a Givens, Geof H.  |t Computational Statistics.  |d Chicester : Wiley, ©2012  |z 9780470533314 
830 0 |a Wiley series in computational statistics. 
856 4 0 |u https://doi.org/10.1002/9781118555552  |z Full Text via HEAL-Link 
994 |a 92  |b DG1