Liquid phase oxidation via heterogeneous catalysis : organic synthesis and industrial applications /
BSets the stage for environmentally friendly industrial organic syntheses/b/ From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid, phase selective oxidation catalysis. It fully examines the synthesis, characterization, and...
Άλλοι συγγραφείς: | , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Hoboken, New Jersey :
Wiley,
[2013]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis And Industrial Applications; Contents; Preface; Contributors; Abbreviations; 1 Environmentally Benign Oxidants; 1.1 Introduction; 1.2 Oxygen (Air); 1.3 Alkylhydroperoxides; 1.4 Hydrogen Peroxide; 1.5 Conclusions; References; 2 Oxidation Reactions Catalyzed by Transition-Metal-Substituted Zeolites; 2.1 Introduction; 2.2 Synthesis and Characterization of Zeolites; 2.2.1 Isomorphous Metal Substitution; 2.2.2 Synthesis of Titanium Silicalite-1 (TS-1); 2.2.3 Characterization of Titanium Silicalite-1 (TS-1).
- 2.2.4 Ti-Beta, Synthesis and Characterization2.2.5 Other Ti Zeolites; 2.2.6 Other Metal Zeolites; 2.3 Catalytic Properties; 2.3.1 Hydroxylation of Alkanes; 2.3.2 Hydroxylation of Aromatic Compounds; 2.3.3 Oxidation of Olefinic Compounds; 2.3.4 Oxidation of Alcohol and Ether Compounds; 2.3.5 Reactions of Carbonyl Compounds; 2.3.6 Oxidation of N-Compounds; 2.3.7 Oxidation of S-Compounds; 2.4 Mechanistic Aspects; 2.4.1 The Nature of Active Species; 2.4.2 Hydroxylation; 2.4.3 Epoxidation; 2.4.4 Oxidation of Alcohols; 2.4.5 Ammoximation; 2.4.6 Decomposition of Hydrogen Peroxide.
- 2.4.7 Active Species, Adsorption and Catalytic Activity2.5 Stability of Metal-Substituted Zeolites to Reaction Conditions; 2.6 Conclusions; References; 3 Selective Catalytic Oxidation over Ordered Nanoporous Metallo-Aluminophosphates; 3.1 Introduction; 3.2 Synthesis; 3.2.1 Microporous Aluminophosphates; 3.2.2 Mesoporous Aluminophosphates; 3.3 Characterization; 3.4 Catalytic Properties; 3.4.1 Oxidation of Hydrocarbons; 3.4.2 Oxidation of Olefins; 3.4.3 Oxidation of Alcohols; 3.4.4 Oxidation of Phenols; 3.4.5 Ammoximation and Ammoxidation; 3.4.6 Baeyer-Villiger Oxidation.
- 3.4.7 Oxidation of Heterocycles3.5 Mechanistic Aspects; 3.6 Catalysts Stability; 3.7 Conclusion; References; 4 Selective Oxidations Catalyzed by Mesoporous Metal Silicates; 4.1 Introduction; 4.2 Synthesis and Characterization; 4.2.1 General Synthetic Approaches; 4.2.2 Characterization Techniques; 4.2.3 Sol-Gel Synthesis of Amorphous Mixed Oxides; 4.2.4 Thermolytic Molecular Precursor Method; 4.2.5 Templated Synthesis of Ordered Metal Silicates; 4.2.6 Postsynthesis Modifications; 4.2.7 Organic-Inorganic Hybrid Materials; 4.3 Catalytic Properties; 4.3.1 Oxidation of Alkanes.
- 4.3.2 Oxidation of Aromatic Compounds4.3.3 Oxidation of Olefins; 4.3.4 Oxidation of Alcohols; 4.3.5 Oxidation of Ketones and Aldehydes; 4.3.6 Oxidation of S-compounds; 4.3.7 Oxidation of Amines; 4.4 Mechanistic Aspects; 4.5 Stability; 4.5.1 Mechanisms of Deactivation; 4.5.2 Solving Problem of Hydrothermal Stability; 4.5.3 Hydrothermally Stable Catalysts: Scope and Limitations; 4.6 Conclusions and Outlook; References; 5 Liquid Phase Oxidation of Organic Compounds by Supported Metal-Based Catalysts with a Focus on Gold; 5.1 Introduction; 5.2 Catalyst Preparation and Characterization.