Too big to ignore : the business case for big data /

How businesses of all shapes and sizes can harness the power of Big Data If you haven't heard of Big Data, you're increasingly in the minority. People produce a mind-boggling amount of data every day-so much that making sense of it all is simply beyond the current capabilities of most orga...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Simon, Phil
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : John Wiley & Sons, Inc., [2013]
Σειρά:Wiley and SAS business series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06962nam a2200913 4500
001 ocn828776041
003 OCoLC
005 20170124070834.5
006 m o d
007 cr |||||||||||
008 130228s2013 nju ob 001 0 eng
010 |a  2013008662 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d EBLCP  |d MHW  |d N$T  |d YDXCP  |d MEU  |d TEFOD  |d MEAUC  |d DEBSZ  |d OCLCF  |d UMI  |d CNSPO  |d IDEBK  |d E7B  |d B24X7  |d HF7  |d RECBK  |d AU@  |d UKDOC  |d CDX  |d TEFOD  |d DG1  |d OCLCQ  |d DEBBG  |d COO  |d GrThAP 
019 |a 835981080  |a 842854711  |a 857716803  |a 865013117  |a 880905038  |a 881023726  |a 889234414  |a 957735034  |a 958081263  |a 961609378  |a 962586969  |a 966397982 
020 |a 1299315712  |q (electronic bk.) 
020 |a 9781299315716  |q (electronic bk.) 
020 |a 9781119204039  |q (electronic bk.) 
020 |a 1119204038  |q (electronic bk.) 
020 |z 9781118642108 
020 |z 1118642104 
020 |z 9781118641866 
020 |z 1118641868 
020 |z 9781118641682 
020 |z 111864168X 
020 |z 9781118638170  |q (cloth) 
020 |z 1118638174 
028 0 1 |a EB00067059  |b Recorded Books 
029 1 |a AU@  |b 000051829831 
029 1 |a AU@  |b 000052915417 
029 1 |a AU@  |b 000053294004 
029 1 |a CHNEW  |b 000607961 
029 1 |a CHVBK  |b 303249986 
029 1 |a DEBBG  |b BV041906366 
029 1 |a DEBSZ  |b 397500866 
029 1 |a NZ1  |b 15023119 
029 1 |a DEBBG  |b BV043395541 
035 |a (OCoLC)828776041  |z (OCoLC)835981080  |z (OCoLC)842854711  |z (OCoLC)857716803  |z (OCoLC)865013117  |z (OCoLC)880905038  |z (OCoLC)881023726  |z (OCoLC)889234414  |z (OCoLC)957735034  |z (OCoLC)958081263  |z (OCoLC)961609378  |z (OCoLC)962586969  |z (OCoLC)966397982 
037 |a CL0500000279  |b Safari Books Online 
037 |a 674A632B-F6DE-446A-A099-5ACCFF61EE7B  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a QA76.9.D343 
072 7 |a COM  |x 021030  |2 bisacsh 
082 0 0 |a 006.3/12  |2 23 
049 |a MAIN 
100 1 |a Simon, Phil. 
245 1 0 |a Too big to ignore :  |b the business case for big data /  |c Phil Simon. 
264 1 |a Hoboken, New Jersey :  |b John Wiley & Sons, Inc.,  |c [2013] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wiley & SAS business series 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher; resource not viewed. 
505 0 |a Too Big to Ignore; Contents; List of Tables and Figures; Preface; Acknowledgments; Introduction: This Ain't Your Father's Data; Better Car Insurance through Data; Potholes and General Road Hazards; Recruiting and Retention; How Big Is Big? The Size of Big Data; Why Now? Explaining the Big Data Revolution; The Always-On Consumer; The Plummeting of Technology Costs; The Rise of Data Science; Google and Infonomics; The Platform Economy; The 11/12 Watershed: Sandy and Politics; Social Media and Other Factors; Central Thesis of Book; Plan of Attack; Who Should Read This Book?; Summary; Notes. 
505 8 |a Chapter 1 Data 101 and the Data DelugeThe Beginnings: Structured Data; Structure This! Web 2.0 and the Arrival of Big Data; Unstructured Data; Semi-Structured Data; Metadata; The Composition of Data: Then and Now; The Current State of the Data Union; The Enterprise and the Brave New Big Data World; The Data Disconnect; Big Tools and Big Opportunities; Summary; Notes; Chapter 2 Demystifying Big Data; Characteristics of Big Data; Big Data Is Already Here; Big Data Is Extremely Fragmented; Big Data Is Not an Elixir; Small Data Extends Big Data; Big Data Is a Complement, Not a Substitute. 
505 8 |a Big Data Can Yield Better PredictionsBig Data Giveth-and Big Data Taketh Away; Big Data Is Neither Omniscient Nor Precise; Big Data Is Generally Wide, Not Long; Big Data Is Dynamic and Largely Unpredictable; Big Data Is Largely Consumer Driven; Big Data Is External and "Unmanageable" in the Traditional Sense; Big Data Is Inherently Incomplete; Big Overlap: Big Data, Business Intelligence, and Data Mining; Big Data Is Democratic; The Anti-Definition: What Big Data Is Not; Summary; Notes; Chapter 3 The Elements of Persuasion: Big Data Techniques; The Big Overview. 
505 8 |a Statistical Techniques and MethodsRegression; A/B Testing; Data Visualization; Heat Maps; Time Series Analysis; Automation; Machine Learning and Intelligence; Sensors and Nanotechnology; RFID and NFC; Semantics; Natural Language Processing; Text Analytics; Sentiment Analysis; Big Data and the Gang of Four; Predictive Analytics; Two Key Laws of Big Data; Collaborative Filtering; Limitations of Big Data; Summary; Notes; Chapter 4 Big Data Solutions; Projects, Applications, and Platforms; Hadoop; Other Data Storage Solutions; NoSQL Databases; NewSQL; Columnar Databases. 
505 8 |a Google: Following the Amazon Model?Websites, Start-Ups, and Web Services; Kaggle; Other Start-Ups; Hardware Considerations; The Art and Science of Predictive Analytics; Summary; Notes; Chapter 5 Case Studies: The Big Rewards of Big Data; Quantcast: A Small Big Data Company; Steps: A Big Evolution; Buy Your Audience; Results; Lessons; Explorys: The Human Case for Big Data; Better Healthcare through Hadoop; Steps; Results; Lessons; NASA: How Contests, Gamification, and OpenInnovation Enable Big Data; Background; Examples; A Sample Challenge; Lessons; Summary; Notes. 
520 |a How businesses of all shapes and sizes can harness the power of Big Data If you haven't heard of Big Data, you're increasingly in the minority. People produce a mind-boggling amount of data every day-so much that making sense of it all is simply beyond the current capabilities of most organizations. Traditional tools and systems just can't handle Big Data. How does a marketer identify an emerging trend when she can't read every tweet, blog post, and customer review? How do we separate meaningful information from the noise of the 2.5 quintillion bytes of data we create every day? Simpl. 
650 0 |a Data mining. 
650 0 |a Database management. 
650 0 |a Business  |x Data processing. 
650 0 |a Big data. 
650 4 |a Big data. 
650 4 |a Business  |x Data processing. 
650 4 |a Data mining. 
650 4 |a Database management. 
650 7 |a COMPUTERS  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Business  |x Data processing.  |2 fast  |0 (OCoLC)fst00842293 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Database management.  |2 fast  |0 (OCoLC)fst00888037 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Simon, Phil.  |t Too big to ignore.  |d Hoboken, New Jersey : John Wiley & Sons, Inc., [2013]  |z 9781118638170  |w (DLC) 2013000341 
830 0 |a Wiley and SAS business series. 
856 4 0 |u https://doi.org/10.1002/9781119204039  |z Full Text via HEAL-Link 
994 |a 92  |b DG1