Extended Finite Element Method for Crack Propagation /

Novel techniques for modeling 3D cracks and their evolution in solids are presented. Cracks are modeled in terms of signed distance functions (level sets). Stress, strain and displacement field are determined using the extended finite elements method (X-FEM). Non-linear constitutive behavior for the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Pommier, Sylvie
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Wiley, 2013.
Σειρά:ISTE.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05418nam a2200589 4500
001 ocn830161622
003 OCoLC
005 20170124070303.1
006 m o d
007 cr cnu---unuuu
008 130316s2013 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d DG1  |d N$T  |d OCLCF  |d UKDOC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d DEBBG  |d OCLCQ  |d GrThAP 
020 |a 9781118622650  |q (electronic bk.) 
020 |a 1118622650  |q (electronic bk.) 
020 |a 9781118621844  |q (electronic bk.) 
020 |a 1118621840  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043395623 
029 1 |a DEBSZ  |b 431356696 
029 1 |a DEBSZ  |b 449349578 
035 |a (OCoLC)830161622 
050 4 |a TA409 .E98 2013 
072 7 |a TEC  |x 013000  |2 bisacsh 
082 0 4 |a 620.1/1260151825  |a 620.11260151825 
049 |a MAIN 
245 0 0 |a Extended Finite Element Method for Crack Propagation /  |c Sylvie Pommier [and others]. 
264 1 |a London :  |b Wiley,  |c 2013. 
300 |a 1 online resource (280 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a ISTE 
588 0 |a Print version record. 
505 8 |a 3.5.3. Considering volumic forces3.5.4. Considering thermal loading; Chapter 4. Non-linear Problems, Crack Growth by Fatigue; 4.1. Introduction; 4.2. Fatigue and non-linear fracture mechanics; 4.2.1. Mechanisms of crack growth by fatigue; 4.2.1.1. Crack growth mechanism at low [delta]KI; 4.2.1.2. Crack growth mechanisms at average or high [delta]KI; 4.2.1.3. Macroscopic crack growth rate and striation formation; 4.2.1.4. Fatigue crack growth rate of long cracks, Paris law; 4.2.1.5. Brief conclusions; 4.2.2. Confined plasticity and consequences for crack growth; 4.2.2.1. Irwin's plastic zones. 
505 0 |a Cover; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; List of Symbols; Introduction; Chapter 1. Elementary Concepts of Fracture Mechanics; 1.1. Introduction; 1.2. Superposition principle; 1.3. Modes of crack straining; 1.4. Singular fields at cracking point; 1.4.1. Asymptotic solutions in Mode I; 1.4.2. Asymptotic solutions in Mode II; 1.4.3. Asymptotic solutions in Mode III; 1.4.4. Conclusions; 1.5. Crack propagation criteria; 1.5.1. Local criterion; 1.5.2. Energy criterion; 1.5.2.1. Energy release rate G. 
505 8 |a 1.5.2.2. Relationship between G and stress intensity factors1.5.2.3. How the crack is propagated; 1.5.2.4. Propagation velocity; 1.5.2.5. Direction of crack propagation; Chapter 2. Representation of Fixed and Moving Discontinuities; 2.1. Geometric representation of a crack: a scale problem; 2.1.1. Link between the geometric representation of the crack and the crack model; 2.1.2. Link between the geometric representation of the crack and the numerical method used for crack growth simulation; 2.2. Crack representation by level sets; 2.2.1. Introduction; 2.2.2. Definition of level sets. 
505 8 |a 2.2.3. Level sets discretization2.2.4. Initialization of level sets; 2.3. Simulation of the geometric propagation of a crack; 2.3.1. Some examples of strategies for crack propagation simulation; 2.3.2. Crack propagation modeled by level sets; 2.3.3. Numerical methods dedicated to level set propagation; 2.4. Prospects of the geometric representation of cracks; Chapter 3. Extended Finite Element Method X-FEM; 3.1. Introduction; 3.2. Going back to discretization methods; 3.2.1. Formulation of the problem and notations; 3.2.2. The Rayleigh-Ritz approximation; 3.2.3. Finite element method. 
505 8 |a 3.2.4. Meshless methods. 3.2.5. The partition of unity; 3.3. X-FEM discontinuity modeling; 3.3.1. Introduction, case of a cracked bar; 3.3.1.1. Case a: crack positioned on a node; 3.3.1.2. Case b: crack between two nodes; 3.3.2. Variants; 3.3.3. Extension to two-dimensional and three-dimensional cases; 3.3.4. Level sets within the framework of the eXtended finite element method; 3.4. Technical and mathematical aspects; 3.4.1. Integration; 3.4.2. Conditioning; 3.5. Evaluation of the stress intensity factors; 3.5.1. The Eshelby tensor and the J integral; 3.5.2. Interaction integrals. 
500 |a 4.2.2.2. Role of the T stress. 
520 |a Novel techniques for modeling 3D cracks and their evolution in solids are presented. Cracks are modeled in terms of signed distance functions (level sets). Stress, strain and displacement field are determined using the extended finite elements method (X-FEM). Non-linear constitutive behavior for the crack tip region are developed within this framework to account for non-linear effect in crack propagation. Applications for static or dynamics case are provided. 
504 |a Includes bibliographical references and index. 
650 0 |a Fracture mechanics  |x Mathematics. 
650 0 |a Finite element method. 
650 4 |a Fracture mechanics  |x Mathematics. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Fracture Mechanics.  |2 bisacsh 
650 7 |a Finite element method.  |2 fast  |0 (OCoLC)fst00924897 
650 7 |a Fracture mechanics  |x Mathematics.  |2 fast  |0 (OCoLC)fst00933544 
655 4 |a Electronic books. 
700 1 |a Pommier, Sylvie. 
776 0 8 |i Print version:  |a Pommier, Sylvie.  |t Extended Finite Element Method for Crack Propagation.  |d London : Wiley, ©2013  |z 9781848212091 
830 0 |a ISTE. 
856 4 0 |u https://doi.org/10.1002/9781118622650  |z Full Text via HEAL-Link 
994 |a 92  |b DG1