Mechatronics /

The term Mechatronics is a combination of the words "mechanics" and "electronics". It is the blending of mechanical, electronic, and computer engineering into an integrated design and implementation. Mechatronics systems employ microprocessors and software as well as special-purp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Davim, J. Paulo
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Wiley, 2013.
Σειρά:ISTE.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Cover; Mechatronics; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Mechatronics Systems Based on CAD/CAM; 1.1. Introduction; 1.2. Five-axis NC machine tool with a tilting head; 1.3. Three-axis NC machine tool with a rotary unit; 1.3.1. Introduction; 1.3.2. Post-processor for a three-axis NC machine tool with a rotary unit; 1.3.3. Experiment; 1.4. Articulated-type industrial robot; 1.4.1. Introduction; 1.4.2. For sanding a wooden workpiece; 1.4.3. For mold finishing; 1.5. Desktop Cartesian-type robot; 1.5.1. Background; 1.5.2. Cartesian-type robot.
  • 1.5.3. Design of weak coupling control between force feedback loop and position feedback loop1.5.4. Frequency characteristic of force control system; 1.5.5. Finishing experiment of an LED lens mold; 1.6. Conclusions; 1.7. Bibliography; Chapter 2. Modeling and Control of Ionic Polymer-Metal Composite Actuators for Mechatronics Applications; 2.1. Introduction; 2.2. Electromechanical IPMC model; 2.2.1. Nonlinear electric circuit; 2.2.2. Electromechanical coupling; 2.2.3. Mechanical beam model; 2.2.4. Parameter identification and results; 2.3. IPMC stepper motor; 2.3.1. Mechanical design.
  • 2.3.2. Model integration and simulation2.3.3. Experimental validation; 2.3.4. Extension to four IPMCs; 2.4. Robotic rotary joint; 2.4.1. Mechanical design; 2.4.2. Control system; 2.4.3. System parameter tuning; 2.4.4. Experimental tuning results; 2.4.5. Gain schedule nonlinear controller; 2.4.6. Gain schedule vs. PID controller; 2.5. Discussions; 2.6. Concluding remarks; 2.7. Bibliography; Chapter 3. Modeling and Simulation of Analog Angular Sensors for Manufacturing Purposes; 3.1. Introduction; 3.2. Pancake resolver model; 3.2.1. Description; 3.2.2. Mathematical model.
  • 3.3. Simulation and experimental results3.3.1. Performance of the overall model; 3.3.2. Manufacturer correction tools; 3.4. Conclusions; 3.5. Acknowledgment; 3.6. Bibliography; Chapter 4. Robust Control of Atomic Force Microscopy; 4.1. Introduction; 4.2. Repetitive control of the vertical direction motion; 4.2.1. Tapping mode AFM system model; 4.2.2. Repetitive control basics; 4.2.3. Mapping mixed sensitivity specifications into controller parameter space; 4.2.4. Repetitive control features of COMES; 4.2.5. Robust repetitive controller design using the COMES toolbox.
  • 4.2.6. Simulation results for the vertical direction4.3. MIMO disturbance observer control of the lateral directions; 4.3.1. The piezotube and the experimental setup; 4.3.2. MIMO disturbance observer; 4.3.3. Disturbance observer design for the piezotube and experimental results; 4.4. Concluding remarks; 4.5. Acknowledgments; 4.6. Bibliography; Chapter 5. Automated Identification; 5.1. Introduction; 5.2. Serial binary barcode; 5.2.1. Identification technology for serial binary barcodes; 5.2.2. Requirements for serial binary barcode identification; 5.2.3. Decoding for identification.