Advanced aircraft design : conceptual design, analysis, and optimization of subsonic civil airplanes /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Torenbeek, Egbert
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2013.
Σειρά:Aerospace series (Chichester, England)
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: 1.Design of the Well-Tempered Aircraft
  • 1.1.How Aircraft Design Developed
  • 1.1.1.Evolution of Jetliners and Executive Aircraft
  • 1.1.2.A Framework for Advanced Design
  • 1.1.3.Analytical Design Optimization
  • 1.1.4.Computational Design Environment
  • 1.2.Concept Finding
  • 1.2.1.Advanced Design
  • 1.2.2.Pre-conceptual Studies
  • 1.3.Product Development
  • 1.3.1.Concept Definition
  • 1.3.2.Preliminary Design
  • 1.3.3.Detail Design
  • 1.4.Baseline Design in a Nutshell
  • 1.4.1.Baseline Sizing
  • 1.4.2.Power Plant
  • 1.4.3.Weight and Balance
  • 1.4.4.Structure
  • 1.4.5.Performance Analysis
  • 1.4.6.Closing the Loop
  • 1.5.Automated Design Synthesis
  • 1.5.1.Computational Systems Requirements
  • 1.5.2.Examples
  • 1.5.3.Parametric Surveys
  • 1.6.Technology Assessment
  • 1.7.Structure of the Optimization Problem
  • 1.7.1.Analysis Versus Synthesis
  • 1.7.2.Problem Classification
  • Bibliography
  • 2.Early Conceptual Design
  • 2.1.Scenario and Requirements
  • 2.1.1.What Drives a Design?
  • 2.1.2.Civil Airplane Categories
  • 2.1.3.Top Level Requirements
  • 2.2.Weight Terminology and Prediction
  • 2.2.1.Method Classification
  • 2.2.2.Basic Weight Components
  • 2.2.3.Weight Limits
  • 2.2.4.Transport Capability
  • 2.3.The Unity Equation
  • 2.3.1.Mission Fuel
  • 2.3.2.Empty Weight
  • 2.3.3.Design Weights
  • 2.4.Range Parameter
  • 2.4.1.Aerodynamic Efficiency
  • 2.4.2.Specific Fuel Consumption and Overall Efficiency
  • 2.4.3.Best Cruise Speed
  • 2.5.Environmental Issues
  • 2.5.1.Energy and Payload Fuel Efficiency
  • 2.5.2.`Greener by Design'
  • Bibliography
  • 3.Propulsion and Engine Technology
  • 3.1.Propulsion Leading the Way
  • 3.2.Basic Concepts of Jet Propulsion
  • 3.2.1.Turbojet Thrust
  • 3.2.2.Turbofan Thrust
  • 3.2.3.Specific Fuel Consumption
  • 3.2.4.Overall Efficiency
  • 3.2.5.Thermal and Propulsive Efficiency
  • 3.2.6.Generalized Performance
  • 3.2.7.Mach Number and Altitude Effects
  • 3.3.Turboprop Engines
  • 3.3.1.Power and Specific Fuel Consumption
  • 3.3.2.Generalized Performance
  • 3.3.3.High Speed Propellers
  • 3.4.Turbofan Engine Layout
  • 3.4.1.Bypass Ratio Trends
  • 3.4.2.Rise and Fall of the Propfan
  • 3.4.3.Rebirth of the Open Rotor?
  • 3.5.Power Plant Selection
  • 3.5.1.Power Plant Location
  • 3.5.2.Alternative Fuels
  • 3.5.3.Aircraft Noise
  • Bibliography
  • 4.Aerodynamic Drag and Its Reduction
  • 4.1.Basic Concepts
  • 4.1.1.Lift, Drag and Aerodynamic Efficiency
  • 4.1.2.Drag Breakdown and Definitions
  • 4.2.Decomposition Schemes and Terminology
  • 4.2.1.Pressure and Friction Drag
  • 4.2.2.Viscous Drag
  • 4.2.3.Vortex Drag
  • 4.2.4.Wave Drag
  • 4.3.Subsonic Parasite and Induced Drag
  • 4.3.1.Parasite Drag
  • 4.3.2.Monoplane Induced Drag
  • 4.3.3.Biplane Induced Drag
  • 4.3.4.Multiplane and Boxplane Induced Drag
  • 4.4.Drag Polar Representations
  • 4.4.1.Two-term Approximation
  • 4.4.2.Three-term Approximation
  • 4.4.3.Reynolds Number Effects
  • 4.4.4.Compressibility Correction
  • 4.5.Drag Prediction
  • 4.5.1.Interference Drag
  • 4.5.2.Roughness and Excrescences
  • 4.5.3.Corrections Dependent on Operation
  • 4.5.4.Estimation of Maximum Subsonic L/D
  • 4.5.5.Low-Speed Configuration
  • 4.6.Viscous Drag Reduction
  • 4.6.1.Wetted Area
  • 4.6.2.Turbulent Friction Drag
  • 4.6.3.Natural Laminar Flow
  • 4.6.4.Laminar Flow Control
  • 4.6.5.Hybrid Laminar Flow Control
  • 4.6.6.Gains, Challenges and Barriers of LFC
  • 4.7.Induced Drag Reduction
  • 4.7.1.Wing Span
  • 4.7.2.Spanwise Camber
  • 4.7.3.Non-planar Wing Systems
  • Bibliography
  • 5.From Tube and Wing to Flying Wing
  • 5.1.The Case for Flying Wings
  • 5.1.1.Northrop's All-Wing Aircraft
  • 5.1.2.Flying Wing Controversy
  • 5.1.3.Whither All-Wing Airliners?
  • 5.1.4.Fundamental Issues
  • 5.2.Allocation of Useful Volume
  • 5.2.1.Integration of the Useful Load
  • 5.2.2.Study Ground Rules
  • 5.2.3.Volume Ratio
  • 5.2.4.Zero-Lift Drag
  • 5.2.5.Generalized Aerodynamic Efficiency
  • 5.2.6.Partial Optima
  • 5.3.Survey of Aerodynamic Efficiency
  • 5.3.1.Altitude Variation
  • 5.3.2.Aspect Ratio and Span
  • 5.3.3.Engine-Airframe Matching
  • 5.4.Survey of the Parameter ML/D
  • 5.4.1.Optimum Flight Conditions
  • 5.4.2.The Drag Parameter
  • 5.5.Integrated Configurations Compared
  • 5.5.1.Conventional Baseline
  • 5.5.2.Is a Wing Alone Sufficient?
  • 5.5.3.Blended Wing Body
  • 5.5.4.Hybrid Flying Wing
  • 5.5.5.Span Loader
  • 5.6.Flying Wing Design
  • 5.6.1.Hang-Ups or Showstopper?
  • 5.6.2.Structural Design and Weight
  • 5.6.3.The Flying Wing: Will It Fly?
  • Bibliography
  • 6.Clean Sheet Design
  • 6.1.Dominant and Radical Configurations
  • 6.1.1.Established Configurations
  • 6.1.2.New Paradigms
  • 6.2.Morphology of Shapes
  • 6.2.1.Classification
  • 6.2.2.Lifting Systems
  • 6.2.3.Plan View Classification
  • 6.2.4.Strut-Braced Wings
  • 6.2.5.Propulsion and Concept Integration
  • 6.3.Wing and Tail Configurations
  • 6.3.1.Aerodynamic Limits
  • 6.3.2.The Balanced Design
  • 6.3.3.Evaluation
  • 6.3.4.Relaxed Inherent Stability
  • 6.4.Aircraft Featuring a Foreplane
  • 6.4.1.Canard Configuration
  • 6.4.2.Three-Surface Aircraft
  • 6.5.Non-Planar Lifting Systems
  • 6.5.1.Transonic Boxplane
  • 6.5.2.C-Wing
  • 6.6.Joined Wing Aircraft
  • 6.6.1.Structural Principles and Weight
  • 6.6.2.Aerodynamic Aspects
  • 6.6.3.Stability and Control
  • 6.6.4.Design Integration
  • 6.7.Twin-Fuselage Aircraft
  • 6.7.1.Design Integration
  • 6.8.Hydrogen-Fuelled Commercial Transports
  • 6.8.1.Properties of LH2
  • 6.8.2.Fuel System
  • 6.8.3.Handling Safety, Economics and Logistics
  • 6.9.Promising Concepts
  • Bibliography
  • 7.Aircraft Design Optimization
  • 7.1.The Perfect Design: An Illusion?
  • 7.2.Elements of Optimization
  • 7.2.1.Design Parameters
  • 7.2.2.Optimal Control and Discrete-Variable Optimization
  • 7.2.3.Basic Terminology
  • 7.2.4.Single-Objective Optimization
  • 7.2.5.Unconstrained Optimizer
  • 7.2.6.Constrained Optimizer
  • 7.3.Analytical or Numerical Optimization?
  • 7.3.1.Analytical Approach
  • 7.3.2.Multivariate Optimization
  • 7.3.3.Unconstrained Optimization
  • 7.3.4.Constrained Optimization
  • 7.3.5.Response Surface Approximation
  • 7.3.6.Global Models
  • 7.4.Large Optimization Problems
  • 7.4.1.Concept Sizing and Evaluation
  • 7.4.2.Multidisciplinary Optimization
  • 7.4.3.System Decomposition
  • 7.4.4.Multilevel Optimization
  • 7.4.5.Multi-Objective Optimization
  • 7.5.Practical Optimization in Conceptual Design
  • 7.5.1.Arguments of the Sceptic
  • 7.5.2.Problem Structure
  • 7.5.3.Selecting Selection Variables
  • 7.5.4.Design Sensitivity
  • 7.5.5.The Objective Function
  • Bibliography
  • 8.Theory of Optimum Weight
  • 8.1.Weight Engineering: Core of Aircraft Design
  • 8.1.1.Prediction Methods
  • 8.1.2.Use of Statistics
  • 8.2.Design Sensitivity
  • 8.2.1.Problem Structure
  • 8.2.2.Selection Variables
  • 8.3.Jet Transport Empty Weight
  • 8.3.1.Weight Breakdown
  • 8.3.2.Wing Structure (Item 10)
  • 8.3.3.Fuselage Structure (Item 11)
  • 8.3.4.Empennage Structure (Items 12 and 13)
  • 8.3.5.Landing Gear Structure (Item 14)
  • 8.3.6.Power Plant and Engine Pylons (Items 2 and 15)
  • 8.3.7.Systems, Furnishings and Operational Items (Items 3, 4 and 5)
  • 8.3.8.Operating Empty Weight: Example
  • 8.4.Design Sensitivity of Airframe Drag
  • 8.4.1.Drag Decomposition
  • 8.4.2.Aerodynamic Efficiency
  • 8.5.Thrust, Power Plant and Fuel Weight
  • 8.5.1.Installed Thrust and Power Plant Weight
  • 8.5.2.Mission Fuel
  • 8.5.3.Propulsion Weight Penalty
  • 8.5.4.Wing and Propulsion Weight Fraction
  • 8.5.5.Optimum Weight Fractions Compared
  • 8.6.Take-Off Weight, Thrust and Fuel Efficiency
  • 8.6.1.Maximum Take-Off Weight
  • 8.6.2.Installed Thrust and Fuel Energy Efficiency
  • 8.6.3.Unconstrained Optima Compared
  • 8.6.4.Range for Given MTOW
  • 8.6.5.Extended Range Version
  • 8.7.Summary and Reflection
  • 8.7.1.Which Figure of Merit?
  • 8.7.2.Conclusion
  • 8.7.3.Accuracy
  • Bibliography
  • 9.Matching Engines and Airframe
  • 9.1.Requirements and Constraints
  • 9.2.Cruise-Sized Engines
  • 9.2.1.Installed Take-Off Thrust
  • 9.2.2.The Thumbprint
  • 9.3.Low Speed Requirements
  • 9.3.1.Stalling Speed
  • 9.3.2.Take-Off Climb
  • 9.3.3.Approach and Landing Climb
  • 9.3.4.Second Segment Climb Gradient
  • 9.4.Schematic Take-Off Analysis
  • 9.4.1.Definitions of Take-Off Field Length
  • 9.4.2.Take-Off Run
  • 9.4.3.Airborne Distance
  • 9.4.4.Take-Off Distance
  • 9.4.5.Generalized Thrust and Span Loading Constraint
  • 9.4.6.Minimum Thrust for Given TOFL
  • 9.5.Approach and Landing
  • 9.5.1.Landing Distance Analysis
  • 9.5.2.Approach Speed and Wing Loading
  • 9.6.Engine Selection and Installation
  • 9.6.1.Identifying the Best Match
  • 9.6.2.Initial Engine Assessment
  • 9.6.3.Engine Selection
  • Bibliography
  • 10.Elements of Aerodynamic Wing Design
  • 10.1.Introduction
  • 10.1.1.Problem Structure
  • 10.1.2.Relation to Engine Selection
  • 10.2.Planform Geometry
  • 10.2.1.Wing Area and Design Lift Coefficient
  • 10.2.2.Span and Aspect Ratio
  • 10.3.Design Sensitivity Information
  • 10.3.1.Aerodynamic Efficiency
  • 10.3.2.Propulsion Weight Contribution
  • 10.3.3.Wing and Tail Structure Weight
  • 10.3.4.Wing Penalty Function and MTOW
  • 10.4.Subsonic Aircraft Wing
  • 10.4.1.Problem Structure
  • 10.4.2.Unconstrained Optima
  • 10.4.3.Minimum Propulsion Weight Penalty
  • 10.4.4.Accuracy
  • 10.5.Constrained Optima
  • 10.5.1.Take-Off Field Length
  • 10.5.2.Tank Volume
  • 10.5.3.Wing and Tail Weight Fraction
  • 10.5.4.Selection of the Design
  • 10.6.Transonic Aircraft Wing
  • 10.6.1.Geometry
  • 10.6.2.Wing Drag in the Design Condition
  • 10.6.3.Modified Wing Penalty Function
  • 10.6.4.Thickness Ratio Limit
  • 10.6.5.WPF Affected by Sweep Angle and Thickness Ratio
  • 10.7.Lift Coefficient and Aspect Ratio
  • 10.7.1.Partial Optima
  • 10.7.2.Constraints
  • 10.7.3.Refining the Optimization
  • 10.8.Detailed Design
  • 10.8.1.Taper and Lift Distribution
  • 10.8.2.Camber and Twist Distribution
  • 10.8.3.Forward Swept Wing (FSW)
  • 10.8.4.Wing-Tip Devices
  • 10.9.High Lift Devices