Advanced aircraft design : conceptual design, analysis, and optimization of subsonic civil airplanes /
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Chichester, West Sussex, United Kingdom :
John Wiley & Sons Inc.,
2013.
|
Σειρά: | Aerospace series (Chichester, England)
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1.Design of the Well-Tempered Aircraft
- 1.1.How Aircraft Design Developed
- 1.1.1.Evolution of Jetliners and Executive Aircraft
- 1.1.2.A Framework for Advanced Design
- 1.1.3.Analytical Design Optimization
- 1.1.4.Computational Design Environment
- 1.2.Concept Finding
- 1.2.1.Advanced Design
- 1.2.2.Pre-conceptual Studies
- 1.3.Product Development
- 1.3.1.Concept Definition
- 1.3.2.Preliminary Design
- 1.3.3.Detail Design
- 1.4.Baseline Design in a Nutshell
- 1.4.1.Baseline Sizing
- 1.4.2.Power Plant
- 1.4.3.Weight and Balance
- 1.4.4.Structure
- 1.4.5.Performance Analysis
- 1.4.6.Closing the Loop
- 1.5.Automated Design Synthesis
- 1.5.1.Computational Systems Requirements
- 1.5.2.Examples
- 1.5.3.Parametric Surveys
- 1.6.Technology Assessment
- 1.7.Structure of the Optimization Problem
- 1.7.1.Analysis Versus Synthesis
- 1.7.2.Problem Classification
- Bibliography
- 2.Early Conceptual Design
- 2.1.Scenario and Requirements
- 2.1.1.What Drives a Design?
- 2.1.2.Civil Airplane Categories
- 2.1.3.Top Level Requirements
- 2.2.Weight Terminology and Prediction
- 2.2.1.Method Classification
- 2.2.2.Basic Weight Components
- 2.2.3.Weight Limits
- 2.2.4.Transport Capability
- 2.3.The Unity Equation
- 2.3.1.Mission Fuel
- 2.3.2.Empty Weight
- 2.3.3.Design Weights
- 2.4.Range Parameter
- 2.4.1.Aerodynamic Efficiency
- 2.4.2.Specific Fuel Consumption and Overall Efficiency
- 2.4.3.Best Cruise Speed
- 2.5.Environmental Issues
- 2.5.1.Energy and Payload Fuel Efficiency
- 2.5.2.`Greener by Design'
- Bibliography
- 3.Propulsion and Engine Technology
- 3.1.Propulsion Leading the Way
- 3.2.Basic Concepts of Jet Propulsion
- 3.2.1.Turbojet Thrust
- 3.2.2.Turbofan Thrust
- 3.2.3.Specific Fuel Consumption
- 3.2.4.Overall Efficiency
- 3.2.5.Thermal and Propulsive Efficiency
- 3.2.6.Generalized Performance
- 3.2.7.Mach Number and Altitude Effects
- 3.3.Turboprop Engines
- 3.3.1.Power and Specific Fuel Consumption
- 3.3.2.Generalized Performance
- 3.3.3.High Speed Propellers
- 3.4.Turbofan Engine Layout
- 3.4.1.Bypass Ratio Trends
- 3.4.2.Rise and Fall of the Propfan
- 3.4.3.Rebirth of the Open Rotor?
- 3.5.Power Plant Selection
- 3.5.1.Power Plant Location
- 3.5.2.Alternative Fuels
- 3.5.3.Aircraft Noise
- Bibliography
- 4.Aerodynamic Drag and Its Reduction
- 4.1.Basic Concepts
- 4.1.1.Lift, Drag and Aerodynamic Efficiency
- 4.1.2.Drag Breakdown and Definitions
- 4.2.Decomposition Schemes and Terminology
- 4.2.1.Pressure and Friction Drag
- 4.2.2.Viscous Drag
- 4.2.3.Vortex Drag
- 4.2.4.Wave Drag
- 4.3.Subsonic Parasite and Induced Drag
- 4.3.1.Parasite Drag
- 4.3.2.Monoplane Induced Drag
- 4.3.3.Biplane Induced Drag
- 4.3.4.Multiplane and Boxplane Induced Drag
- 4.4.Drag Polar Representations
- 4.4.1.Two-term Approximation
- 4.4.2.Three-term Approximation
- 4.4.3.Reynolds Number Effects
- 4.4.4.Compressibility Correction
- 4.5.Drag Prediction
- 4.5.1.Interference Drag
- 4.5.2.Roughness and Excrescences
- 4.5.3.Corrections Dependent on Operation
- 4.5.4.Estimation of Maximum Subsonic L/D
- 4.5.5.Low-Speed Configuration
- 4.6.Viscous Drag Reduction
- 4.6.1.Wetted Area
- 4.6.2.Turbulent Friction Drag
- 4.6.3.Natural Laminar Flow
- 4.6.4.Laminar Flow Control
- 4.6.5.Hybrid Laminar Flow Control
- 4.6.6.Gains, Challenges and Barriers of LFC
- 4.7.Induced Drag Reduction
- 4.7.1.Wing Span
- 4.7.2.Spanwise Camber
- 4.7.3.Non-planar Wing Systems
- Bibliography
- 5.From Tube and Wing to Flying Wing
- 5.1.The Case for Flying Wings
- 5.1.1.Northrop's All-Wing Aircraft
- 5.1.2.Flying Wing Controversy
- 5.1.3.Whither All-Wing Airliners?
- 5.1.4.Fundamental Issues
- 5.2.Allocation of Useful Volume
- 5.2.1.Integration of the Useful Load
- 5.2.2.Study Ground Rules
- 5.2.3.Volume Ratio
- 5.2.4.Zero-Lift Drag
- 5.2.5.Generalized Aerodynamic Efficiency
- 5.2.6.Partial Optima
- 5.3.Survey of Aerodynamic Efficiency
- 5.3.1.Altitude Variation
- 5.3.2.Aspect Ratio and Span
- 5.3.3.Engine-Airframe Matching
- 5.4.Survey of the Parameter ML/D
- 5.4.1.Optimum Flight Conditions
- 5.4.2.The Drag Parameter
- 5.5.Integrated Configurations Compared
- 5.5.1.Conventional Baseline
- 5.5.2.Is a Wing Alone Sufficient?
- 5.5.3.Blended Wing Body
- 5.5.4.Hybrid Flying Wing
- 5.5.5.Span Loader
- 5.6.Flying Wing Design
- 5.6.1.Hang-Ups or Showstopper?
- 5.6.2.Structural Design and Weight
- 5.6.3.The Flying Wing: Will It Fly?
- Bibliography
- 6.Clean Sheet Design
- 6.1.Dominant and Radical Configurations
- 6.1.1.Established Configurations
- 6.1.2.New Paradigms
- 6.2.Morphology of Shapes
- 6.2.1.Classification
- 6.2.2.Lifting Systems
- 6.2.3.Plan View Classification
- 6.2.4.Strut-Braced Wings
- 6.2.5.Propulsion and Concept Integration
- 6.3.Wing and Tail Configurations
- 6.3.1.Aerodynamic Limits
- 6.3.2.The Balanced Design
- 6.3.3.Evaluation
- 6.3.4.Relaxed Inherent Stability
- 6.4.Aircraft Featuring a Foreplane
- 6.4.1.Canard Configuration
- 6.4.2.Three-Surface Aircraft
- 6.5.Non-Planar Lifting Systems
- 6.5.1.Transonic Boxplane
- 6.5.2.C-Wing
- 6.6.Joined Wing Aircraft
- 6.6.1.Structural Principles and Weight
- 6.6.2.Aerodynamic Aspects
- 6.6.3.Stability and Control
- 6.6.4.Design Integration
- 6.7.Twin-Fuselage Aircraft
- 6.7.1.Design Integration
- 6.8.Hydrogen-Fuelled Commercial Transports
- 6.8.1.Properties of LH2
- 6.8.2.Fuel System
- 6.8.3.Handling Safety, Economics and Logistics
- 6.9.Promising Concepts
- Bibliography
- 7.Aircraft Design Optimization
- 7.1.The Perfect Design: An Illusion?
- 7.2.Elements of Optimization
- 7.2.1.Design Parameters
- 7.2.2.Optimal Control and Discrete-Variable Optimization
- 7.2.3.Basic Terminology
- 7.2.4.Single-Objective Optimization
- 7.2.5.Unconstrained Optimizer
- 7.2.6.Constrained Optimizer
- 7.3.Analytical or Numerical Optimization?
- 7.3.1.Analytical Approach
- 7.3.2.Multivariate Optimization
- 7.3.3.Unconstrained Optimization
- 7.3.4.Constrained Optimization
- 7.3.5.Response Surface Approximation
- 7.3.6.Global Models
- 7.4.Large Optimization Problems
- 7.4.1.Concept Sizing and Evaluation
- 7.4.2.Multidisciplinary Optimization
- 7.4.3.System Decomposition
- 7.4.4.Multilevel Optimization
- 7.4.5.Multi-Objective Optimization
- 7.5.Practical Optimization in Conceptual Design
- 7.5.1.Arguments of the Sceptic
- 7.5.2.Problem Structure
- 7.5.3.Selecting Selection Variables
- 7.5.4.Design Sensitivity
- 7.5.5.The Objective Function
- Bibliography
- 8.Theory of Optimum Weight
- 8.1.Weight Engineering: Core of Aircraft Design
- 8.1.1.Prediction Methods
- 8.1.2.Use of Statistics
- 8.2.Design Sensitivity
- 8.2.1.Problem Structure
- 8.2.2.Selection Variables
- 8.3.Jet Transport Empty Weight
- 8.3.1.Weight Breakdown
- 8.3.2.Wing Structure (Item 10)
- 8.3.3.Fuselage Structure (Item 11)
- 8.3.4.Empennage Structure (Items 12 and 13)
- 8.3.5.Landing Gear Structure (Item 14)
- 8.3.6.Power Plant and Engine Pylons (Items 2 and 15)
- 8.3.7.Systems, Furnishings and Operational Items (Items 3, 4 and 5)
- 8.3.8.Operating Empty Weight: Example
- 8.4.Design Sensitivity of Airframe Drag
- 8.4.1.Drag Decomposition
- 8.4.2.Aerodynamic Efficiency
- 8.5.Thrust, Power Plant and Fuel Weight
- 8.5.1.Installed Thrust and Power Plant Weight
- 8.5.2.Mission Fuel
- 8.5.3.Propulsion Weight Penalty
- 8.5.4.Wing and Propulsion Weight Fraction
- 8.5.5.Optimum Weight Fractions Compared
- 8.6.Take-Off Weight, Thrust and Fuel Efficiency
- 8.6.1.Maximum Take-Off Weight
- 8.6.2.Installed Thrust and Fuel Energy Efficiency
- 8.6.3.Unconstrained Optima Compared
- 8.6.4.Range for Given MTOW
- 8.6.5.Extended Range Version
- 8.7.Summary and Reflection
- 8.7.1.Which Figure of Merit?
- 8.7.2.Conclusion
- 8.7.3.Accuracy
- Bibliography
- 9.Matching Engines and Airframe
- 9.1.Requirements and Constraints
- 9.2.Cruise-Sized Engines
- 9.2.1.Installed Take-Off Thrust
- 9.2.2.The Thumbprint
- 9.3.Low Speed Requirements
- 9.3.1.Stalling Speed
- 9.3.2.Take-Off Climb
- 9.3.3.Approach and Landing Climb
- 9.3.4.Second Segment Climb Gradient
- 9.4.Schematic Take-Off Analysis
- 9.4.1.Definitions of Take-Off Field Length
- 9.4.2.Take-Off Run
- 9.4.3.Airborne Distance
- 9.4.4.Take-Off Distance
- 9.4.5.Generalized Thrust and Span Loading Constraint
- 9.4.6.Minimum Thrust for Given TOFL
- 9.5.Approach and Landing
- 9.5.1.Landing Distance Analysis
- 9.5.2.Approach Speed and Wing Loading
- 9.6.Engine Selection and Installation
- 9.6.1.Identifying the Best Match
- 9.6.2.Initial Engine Assessment
- 9.6.3.Engine Selection
- Bibliography
- 10.Elements of Aerodynamic Wing Design
- 10.1.Introduction
- 10.1.1.Problem Structure
- 10.1.2.Relation to Engine Selection
- 10.2.Planform Geometry
- 10.2.1.Wing Area and Design Lift Coefficient
- 10.2.2.Span and Aspect Ratio
- 10.3.Design Sensitivity Information
- 10.3.1.Aerodynamic Efficiency
- 10.3.2.Propulsion Weight Contribution
- 10.3.3.Wing and Tail Structure Weight
- 10.3.4.Wing Penalty Function and MTOW
- 10.4.Subsonic Aircraft Wing
- 10.4.1.Problem Structure
- 10.4.2.Unconstrained Optima
- 10.4.3.Minimum Propulsion Weight Penalty
- 10.4.4.Accuracy
- 10.5.Constrained Optima
- 10.5.1.Take-Off Field Length
- 10.5.2.Tank Volume
- 10.5.3.Wing and Tail Weight Fraction
- 10.5.4.Selection of the Design
- 10.6.Transonic Aircraft Wing
- 10.6.1.Geometry
- 10.6.2.Wing Drag in the Design Condition
- 10.6.3.Modified Wing Penalty Function
- 10.6.4.Thickness Ratio Limit
- 10.6.5.WPF Affected by Sweep Angle and Thickness Ratio
- 10.7.Lift Coefficient and Aspect Ratio
- 10.7.1.Partial Optima
- 10.7.2.Constraints
- 10.7.3.Refining the Optimization
- 10.8.Detailed Design
- 10.8.1.Taper and Lift Distribution
- 10.8.2.Camber and Twist Distribution
- 10.8.3.Forward Swept Wing (FSW)
- 10.8.4.Wing-Tip Devices
- 10.9.High Lift Devices