Introduction to probability and statistics for ecosystem managers : simulation and resampling /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Haas, Timothy C.
Άλλοι συγγραφείς: Lubar, Sheldon B.
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : Wiley, 2013.
Σειρά:Statistics in practice.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Introduction
  • 1.1. The textbook's purpose
  • 1.1.1. The textbook's focus on ecosystem management
  • 1.1.2. Reader level, prerequisites, and typical reader jobs
  • 1.2. The textbook's pedagogical approach
  • 1.2.1. General points
  • 1.2.2. Use of this textbook for self-study
  • 1.2.3. Learning resources
  • 1.3. Chapter summaries
  • 1.4. Installing and running R Commander
  • 1.4.1. Running R
  • 1.4.2. Starting an R Commander session
  • 1.4.3. Terminating an R Commander session
  • 1.5. Introductory R Commander session
  • 1.6. Teaching probability through simulation
  • 1.6.1. The frequentist statistical inference paradigm
  • 1.7. Summary
  • 2. Probability and simulation
  • 2.1. Introduction
  • 2.2. Basic probability
  • 2.2.1. Definitions
  • 2.2.2. Independence
  • 2.3. Random variables
  • 2.3.1. Definitions
  • 2.3.2. Simulating random variables
  • 2.3.3.A random variable's expected value (mean) and variance
  • 2.3.4. Details of the normal (Gaussian) distribution.
  • 2.3.5. Distribution approximations
  • 2.4. Joint distributions
  • 2.4.1. Definition
  • 2.4.2. Mixed variables
  • 2.4.3. Marginal distribution
  • 2.4.4. Conditional distributions
  • 2.4.5. Independent random variables
  • 2.5. Influence diagrams
  • 2.5.1. Definitions
  • 2.5.2. Example of a Bayesian network in ecosystem management
  • 2.5.3. Modeling causal relationships with an influence diagram
  • 2.6. Advantages of influence diagrams in ecosystem management
  • 2.7. Two ecosystem management Bayesian networks
  • 2.7.1. Waterbody eutrophication
  • 2.7.2. Wildlife population viability
  • 2.8. Influence diagram sensitivity analysis
  • 2.9. Drawbacks to influence diagrams
  • 3. Application of probability: Models of political decision making in ecosystem management
  • 3.1. Introduction
  • 3.2. Influence diagram models of decision making
  • 3.2.1. Ecosystem status perception nodes
  • 3.2.2. Image nodes
  • 3.2.3. Economic, militaristic, and institutional goal nodes.
  • 3.2.4. Audience effect nodes
  • 3.2.5. Resource nodes
  • 3.2.6. Action and target nodes
  • 3.2.7. Overall goal attainment node
  • 3.2.8. How a group influence diagram reaches a decision
  • 3.2.9. An advantage of this decision-making architecture
  • 3.2.10. Evaluation dimensions
  • 3.3. Rhino poachers: A simplified model
  • 3.4. Policymakers: A simplified model
  • 3.5. Conclusions
  • 4. Statistical inference I: Basic ideas and parameter estimation
  • 4.1. Definitions of some fundamental terms
  • 4.2. Estimating the PDF and CDF
  • 4.2.1. Histograms
  • 4.2.2. Ogive
  • 4.3. Measures of central tendency and dispersion
  • 4.4. Sample quantiles
  • 4.4.1. Sample quartiles
  • 4.4.2. Sample deciles and percentiles
  • 4.5. Distribution of a statistic
  • 4.5.1. Basic setup in statistics
  • 4.5.2. Sampling distributions
  • 4.5.3. Normal quantile-quantile plot
  • 4.6. The central limit theorem
  • 4.7. Parameter estimation
  • 4.7.1. Bias, variance, and efficiency
  • 4.8. Interval estimates.
  • 5.4.4. Testing for equal variances
  • 5.5. Hypothesis tests on the regression model
  • 5.5.1. Prediction and estimation confidence intervals
  • 5.5.2. Multiple regression
  • 5.5.3. Original scale prediction in regression
  • 5.6. Brief introduction to vectors and matrices
  • 5.6.1. Basic definitions
  • 5.6.2. Inverse of a matrix
  • 5.6.3. Random vectors and random matrices
  • 5.7. Matrix form of multiple regression
  • 5.7.1. Generalized least squares
  • 5.8. Hypothesis testing with the delete-d jackknife
  • 5.8.1. Background
  • 5.8.2.A one-sample delete-d jackknife test
  • 5.8.3. Testing classifier error rates
  • 5.8.4. Important points about this test
  • 5.8.5. Parameter confidence intervals
  • 6. Introduction to spatial statistics
  • 6.1. Overview
  • 6.1.1. Types of spatial processes
  • 6.2. Spatial statistics and GIS
  • 6.2.1. Types of spatial data
  • 6.3. QGIS
  • 6.3.1. Capabilities
  • 6.3.2. Installing QGIS
  • 6.3.3. Documentation and tutorials
  • 6.3.4. Installing plugins.
  • 6.3.5. How to convert a text file to a shapefile
  • 6.4. Continuous spatial processes
  • 6.4.1. Definitions
  • 6.4.2. Graphical tools for exploring continuous spatial data
  • 6.4.3. Third- and fourth-order cumulant minimization
  • 6.4.4. Best linear unbiased predictor
  • 6.4.5. Kriging variance
  • 6.4.6. Model-fitting diagnostics
  • 6.4.7. Kriging within a window
  • 6.5. Spatial point processes
  • 6.5.1. Definitions
  • 6.5.2. Marked spatial point processes
  • 6.5.3. Conclusions
  • 6.6. Continuously valued multivariate processes
  • 6.6.1. Fitting multivariate covariance functions
  • 6.6.2. Cokriging: The MWRCK procedure
  • 7. Introduction to spatio-temporal statistics
  • 7.1. Introduction
  • 7.2. Representing time in a GIS
  • 7.2.1. The QGIS Time Manager plugin
  • 7.2.2.A Clifford algebra-based spatio-temporal data structure
  • 7.2.3.A raster- and event-based spatio-temporal data model
  • 7.2.4. Application of ESTDM to a land cover study.
  • 7.3. Spatio-temporal prediction: MCSTK
  • 7.3.1. Algorithms
  • 7.3.2. Covariogram model and its estimator
  • 7.4. Multivariate processes
  • 7.4.1. Definitions
  • 7.4.2. Transformations
  • 7.4.3. Covariograms and cross-covariograms
  • 7.4.4. Parameter estimation
  • 7.4.5. Prediction algorithms
  • 7.4.6. Cross-validation
  • 7.4.7. Summary
  • 7.5. Spatio-temporal point processes
  • 7.6. Marked spatio-temporal point processes
  • 7.6.1.A mark semivariogram estimator
  • 8. Application of statistical inference: Estimating the parameters of an individual-based model
  • 8.1. Overview
  • 8.2.A simple IBM and its estimation
  • 8.2.1. Simple IBM
  • 8.2.2. Parameter estimation
  • 8.3. Fitting IBMs with MSHD
  • 8.3.1. Ergodicity
  • 8.3.2. Observable random variables from IBM output
  • 8.4. Further properties of parameter estimators
  • 8.4.1. Consistency
  • 8.4.2. Robustness
  • 8.5. Parameter confidence intervals for a nonergodic model
  • 8.6. Rhino-supporting ecosystem influence diagram.
  • 8.6.1. Spatial effects on poaching
  • 8.6.2. IBM variables
  • 8.6.3. Initial conditions and hypothesis values of parameters
  • 8.6.4. Mapping functions
  • 8.6.5. Realism of ecosystem influence diagram output
  • 8.7. Estimation of rhino IBM parameters
  • 8.7.1. Parameter confidence intervals
  • 9. Guiding an influence diagram's learning
  • 9.1. Introduction
  • 9.2. Online learning of Bayesian network parameters
  • 9.2.1. Basic algorithm using simulation
  • 9.2.2. Updating influence diagrams
  • 9.3. Learning an influence diagram's structure
  • 9.3.1. Minimum description length score function
  • 9.3.2. Description length of an edge
  • 9.3.3. Random generation of DAGs
  • 9.3.4. Algorithm to detect and delete cycles
  • 9.3.5. Mutate functions
  • 9.3.6. MDLEP algorithm
  • 9.3.7. Using MDLEP to learn influence diagram structure
  • 9.4. Feedback-based learning for group decision-making diagrams
  • 9.4.1. Definitions and algorithm
  • 9.5. Summary and conclusions.
  • 10. Fitting and testing a political-ecological simulator
  • 10.1. Introduction
  • 10.1.1. Background on rhino poaching
  • 10.1.2. Scenarios wherein rhino poaching is reduced
  • 10.2. EMT simulator construction
  • 10.2.1. Modeled groups
  • 10.2.2. Rhino-supporting ecosystem influence diagram
  • 10.3. Consistency analysis estimates of simulator parameters
  • 10.4. MPEMP computation
  • 10.4.1. Setup
  • 10.4.2. Solution
  • 10.5. Conclusions.