Introduction to probability and statistics for ecosystem managers : simulation and resampling /
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Chichester, West Sussex, United Kingdom :
Wiley,
2013.
|
Σειρά: | Statistics in practice.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Introduction
- 1.1. The textbook's purpose
- 1.1.1. The textbook's focus on ecosystem management
- 1.1.2. Reader level, prerequisites, and typical reader jobs
- 1.2. The textbook's pedagogical approach
- 1.2.1. General points
- 1.2.2. Use of this textbook for self-study
- 1.2.3. Learning resources
- 1.3. Chapter summaries
- 1.4. Installing and running R Commander
- 1.4.1. Running R
- 1.4.2. Starting an R Commander session
- 1.4.3. Terminating an R Commander session
- 1.5. Introductory R Commander session
- 1.6. Teaching probability through simulation
- 1.6.1. The frequentist statistical inference paradigm
- 1.7. Summary
- 2. Probability and simulation
- 2.1. Introduction
- 2.2. Basic probability
- 2.2.1. Definitions
- 2.2.2. Independence
- 2.3. Random variables
- 2.3.1. Definitions
- 2.3.2. Simulating random variables
- 2.3.3.A random variable's expected value (mean) and variance
- 2.3.4. Details of the normal (Gaussian) distribution.
- 2.3.5. Distribution approximations
- 2.4. Joint distributions
- 2.4.1. Definition
- 2.4.2. Mixed variables
- 2.4.3. Marginal distribution
- 2.4.4. Conditional distributions
- 2.4.5. Independent random variables
- 2.5. Influence diagrams
- 2.5.1. Definitions
- 2.5.2. Example of a Bayesian network in ecosystem management
- 2.5.3. Modeling causal relationships with an influence diagram
- 2.6. Advantages of influence diagrams in ecosystem management
- 2.7. Two ecosystem management Bayesian networks
- 2.7.1. Waterbody eutrophication
- 2.7.2. Wildlife population viability
- 2.8. Influence diagram sensitivity analysis
- 2.9. Drawbacks to influence diagrams
- 3. Application of probability: Models of political decision making in ecosystem management
- 3.1. Introduction
- 3.2. Influence diagram models of decision making
- 3.2.1. Ecosystem status perception nodes
- 3.2.2. Image nodes
- 3.2.3. Economic, militaristic, and institutional goal nodes.
- 3.2.4. Audience effect nodes
- 3.2.5. Resource nodes
- 3.2.6. Action and target nodes
- 3.2.7. Overall goal attainment node
- 3.2.8. How a group influence diagram reaches a decision
- 3.2.9. An advantage of this decision-making architecture
- 3.2.10. Evaluation dimensions
- 3.3. Rhino poachers: A simplified model
- 3.4. Policymakers: A simplified model
- 3.5. Conclusions
- 4. Statistical inference I: Basic ideas and parameter estimation
- 4.1. Definitions of some fundamental terms
- 4.2. Estimating the PDF and CDF
- 4.2.1. Histograms
- 4.2.2. Ogive
- 4.3. Measures of central tendency and dispersion
- 4.4. Sample quantiles
- 4.4.1. Sample quartiles
- 4.4.2. Sample deciles and percentiles
- 4.5. Distribution of a statistic
- 4.5.1. Basic setup in statistics
- 4.5.2. Sampling distributions
- 4.5.3. Normal quantile-quantile plot
- 4.6. The central limit theorem
- 4.7. Parameter estimation
- 4.7.1. Bias, variance, and efficiency
- 4.8. Interval estimates.
- 5.4.4. Testing for equal variances
- 5.5. Hypothesis tests on the regression model
- 5.5.1. Prediction and estimation confidence intervals
- 5.5.2. Multiple regression
- 5.5.3. Original scale prediction in regression
- 5.6. Brief introduction to vectors and matrices
- 5.6.1. Basic definitions
- 5.6.2. Inverse of a matrix
- 5.6.3. Random vectors and random matrices
- 5.7. Matrix form of multiple regression
- 5.7.1. Generalized least squares
- 5.8. Hypothesis testing with the delete-d jackknife
- 5.8.1. Background
- 5.8.2.A one-sample delete-d jackknife test
- 5.8.3. Testing classifier error rates
- 5.8.4. Important points about this test
- 5.8.5. Parameter confidence intervals
- 6. Introduction to spatial statistics
- 6.1. Overview
- 6.1.1. Types of spatial processes
- 6.2. Spatial statistics and GIS
- 6.2.1. Types of spatial data
- 6.3. QGIS
- 6.3.1. Capabilities
- 6.3.2. Installing QGIS
- 6.3.3. Documentation and tutorials
- 6.3.4. Installing plugins.
- 6.3.5. How to convert a text file to a shapefile
- 6.4. Continuous spatial processes
- 6.4.1. Definitions
- 6.4.2. Graphical tools for exploring continuous spatial data
- 6.4.3. Third- and fourth-order cumulant minimization
- 6.4.4. Best linear unbiased predictor
- 6.4.5. Kriging variance
- 6.4.6. Model-fitting diagnostics
- 6.4.7. Kriging within a window
- 6.5. Spatial point processes
- 6.5.1. Definitions
- 6.5.2. Marked spatial point processes
- 6.5.3. Conclusions
- 6.6. Continuously valued multivariate processes
- 6.6.1. Fitting multivariate covariance functions
- 6.6.2. Cokriging: The MWRCK procedure
- 7. Introduction to spatio-temporal statistics
- 7.1. Introduction
- 7.2. Representing time in a GIS
- 7.2.1. The QGIS Time Manager plugin
- 7.2.2.A Clifford algebra-based spatio-temporal data structure
- 7.2.3.A raster- and event-based spatio-temporal data model
- 7.2.4. Application of ESTDM to a land cover study.
- 7.3. Spatio-temporal prediction: MCSTK
- 7.3.1. Algorithms
- 7.3.2. Covariogram model and its estimator
- 7.4. Multivariate processes
- 7.4.1. Definitions
- 7.4.2. Transformations
- 7.4.3. Covariograms and cross-covariograms
- 7.4.4. Parameter estimation
- 7.4.5. Prediction algorithms
- 7.4.6. Cross-validation
- 7.4.7. Summary
- 7.5. Spatio-temporal point processes
- 7.6. Marked spatio-temporal point processes
- 7.6.1.A mark semivariogram estimator
- 8. Application of statistical inference: Estimating the parameters of an individual-based model
- 8.1. Overview
- 8.2.A simple IBM and its estimation
- 8.2.1. Simple IBM
- 8.2.2. Parameter estimation
- 8.3. Fitting IBMs with MSHD
- 8.3.1. Ergodicity
- 8.3.2. Observable random variables from IBM output
- 8.4. Further properties of parameter estimators
- 8.4.1. Consistency
- 8.4.2. Robustness
- 8.5. Parameter confidence intervals for a nonergodic model
- 8.6. Rhino-supporting ecosystem influence diagram.
- 8.6.1. Spatial effects on poaching
- 8.6.2. IBM variables
- 8.6.3. Initial conditions and hypothesis values of parameters
- 8.6.4. Mapping functions
- 8.6.5. Realism of ecosystem influence diagram output
- 8.7. Estimation of rhino IBM parameters
- 8.7.1. Parameter confidence intervals
- 9. Guiding an influence diagram's learning
- 9.1. Introduction
- 9.2. Online learning of Bayesian network parameters
- 9.2.1. Basic algorithm using simulation
- 9.2.2. Updating influence diagrams
- 9.3. Learning an influence diagram's structure
- 9.3.1. Minimum description length score function
- 9.3.2. Description length of an edge
- 9.3.3. Random generation of DAGs
- 9.3.4. Algorithm to detect and delete cycles
- 9.3.5. Mutate functions
- 9.3.6. MDLEP algorithm
- 9.3.7. Using MDLEP to learn influence diagram structure
- 9.4. Feedback-based learning for group decision-making diagrams
- 9.4.1. Definitions and algorithm
- 9.5. Summary and conclusions.
- 10. Fitting and testing a political-ecological simulator
- 10.1. Introduction
- 10.1.1. Background on rhino poaching
- 10.1.2. Scenarios wherein rhino poaching is reduced
- 10.2. EMT simulator construction
- 10.2.1. Modeled groups
- 10.2.2. Rhino-supporting ecosystem influence diagram
- 10.3. Consistency analysis estimates of simulator parameters
- 10.4. MPEMP computation
- 10.4.1. Setup
- 10.4.2. Solution
- 10.5. Conclusions.