Distillation design and control using Aspen simulation /
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Hoboken, N.J. :
Wiley,
[2013]
|
Έκδοση: | 2nd ed. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Fundamentals of Vapor
- Liquid
- Equilibrium (VLE)
- 1.1. Vapor Pressure
- 1.2. Binary VLE Phase Diagrams
- 1.3. Physical Property Methods
- 1.4. Relative Volatility
- 1.5. Bubble Point Calculations
- 1.6. Ternary Diagrams
- 1.7. VLE Nonideality
- 1.8. Residue Curves for Ternary Systems
- 1.9. Distillation Boundaries
- 1.10. Conclusions
- Reference
- 2. Analysis of Distillation Columns
- 2.1. Design Degrees of Freedom
- 2.2. Binary McCabe
- Thiele Method
- 2.2.1. Operating Lines
- 2.2.2.q-Line
- 2.2.3. Stepping Off Trays
- 2.2.4. Effect of Parameters
- 2.2.5. Limiting Conditions
- 2.3. Approximate Multicomponent Methods
- 2.3.1. Fenske Equation for Minimum Number of Trays
- 2.3.2. Underwood Equations for Minimum Reflux Ratio
- 2.4. Conclusions
- 3. Setting Up a Steady-State Simulation
- 3.1. Configuring a New Simulation
- 3.2. Specifying Chemical Components and Physical Properties
- 3.3. Specifying Stream Properties.
- 3.4. Specifying Parameters of Equipment
- 3.4.1. Column C1
- 3.4.2. Valves and Pumps
- 3.5. Running the Simulation
- 3.6. Using Design Spec/Vary Function
- 3.7. Finding the Optimum Feed Tray and Minimum Conditions
- 3.7.1. Optimum Feed Tray
- 3.7.2. Minimum Reflux Ratio
- 3.7.3. Minimum Number of Trays
- 3.8. Column Sizing
- 3.8.1. Length
- 3.8.2. Diameter
- 3.9. Conceptual Design
- 3.10. Conclusions
- 4. Distillation Economic Optimization
- 4.1. Heuristic Optimization
- 4.1.1. Set Total Trays to Twice Minimum Number of Trays
- 4.1.2. Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio
- 4.2. Economic Basis
- 4.3. Results
- 4.4. Operating Optimization
- 4.5. Optimum Pressure for Vacuum Columns
- 4.6. Conclusions
- 5. More Complex Distillation Systems
- 5.1. Extractive Distillation
- 5.1.1. Design
- 5.1.2. Simulation Issues
- 5.2. Ethanol Dehydration
- 5.2.1. VLLE Behavior
- 5.2.2. Process Flowsheet Simulation
- 5.2.3. Converging the Flowsheet.
- 5.3. Pressure-Swing Azeotropic Distillation
- 5.4. Heat-Integrated Columns
- 5.4.1. Flowsheet
- 5.4.2. Converging for Neat Operation
- 5.5. Conclusions
- 6. Steady-State Calculations for Control Structure Selection
- 6.1. Control Structure Alternatives
- 6.1.1. Dual-Composition Control
- 6.1.2. Single-End Control
- 6.2. Feed Composition Sensitivity Analysis (ZSA)
- 6.3. Temperature Control Tray Selection
- 6.3.1. Summary of Methods
- 6.3.2. Binary Propane/Isobutane System
- 6.3.3. Ternary BTX System
- 6.3.4. Ternary Azeotropic System
- 6.4. Conclusions
- Reference
- 7. Converting from Steady-State to Dynamic Simulation
- 7.1. Equipment Sizing
- 7.2. Exporting to Aspen Dynamics
- 7.3. Opening the Dynamic Simulation in Aspen Dynamics
- 7.4. Installing Basic Controllers
- 7.4.1. Reflux
- 7.4.2. Issues
- 7.5. Installing Temperature and Composition Controllers
- 7.5.1. Tray Temperature Control
- 7.5.2.Composition Control.
- 7.5.3.Composition/Temperature Cascade Control
- 7.6. Performance Evaluation
- 7.6.1. Installing a Plot
- 7.6.2. Importing Dynamic Results into Matlab
- 7.6.3. Reboiler Heat Input to Feed Ratio
- 7.6.4.Comparison of Temperature Control with Cascade CC/TC
- 7.7. Conclusions
- 8. Control of More Complex Columns
- 8.1. Extractive Distillation Process
- 8.1.1. Design
- 8.1.2. Control Structure
- 8.1.3. Dynamic Performance
- 8.2. Columns with Partial Condensers
- 8.2.1. Total Vapor Distillate
- 8.2.2. Both Vapor and Liquid Distillate Streams
- 8.3. Control of Heat-Integrated Distillation Columns
- 8.3.1. Process Studied
- 8.3.2. Heat Integration Relationships
- 8.3.3. Control Structure
- 8.3.4. Dynamic Performance
- 8.4. Control of Azeotropic Columns/Decanter System
- 8.4.1. Converting to Dynamics and Closing Recycle Loop
- 8.4.2. Installing the Control Structure
- 8.4.3. Performance
- 8.4.4. Numerical Integration Issues
- 8.5. Unusual Control Structure.
- 8.5.1. Process Studied
- 8.5.2. Economic Optimum Steady-State Design
- 8.5.3. Control Structure Selection
- 8.5.4. Dynamic Simulation Results
- 8.5.5. Alternative Control Structures
- 8.5.6. Conclusions
- 8.6. Conclusions
- References
- 9. Reactive Distillation
- 9.1. Introduction
- 9.2. Types of Reactive Distillation Systems
- 9.2.1. Single-Feed Reactions
- 9.2.2. Irreversible Reaction with Heavy Product
- 9.2.3. Neat Operation Versus Use of Excess Reactant
- 9.3. TAME Process Basics
- 9.3.1. Prereactor
- 9.3.2. Reactive Column C1
- 9.4. TAME Reaction Kinetics and VLE
- 9.5. Plantwide Control Structure
- 9.6. Conclusions
- References
- 10. Control of Sidestream Columns
- 10.1. Liquid Sidestream Column
- 10.1.1. Steady-State Design
- 10.1.2. Dynamic Control
- 10.2. Vapor Sidestream Column
- 10.2.1. Steady-State Design
- 10.2.2. Dynamic Control
- 10.3. Liquid Sidestream Column with Stripper
- 10.3.1. Steady-State Design
- 10.3.2. Dynamic Control.
- 10.4. Vapor Sidestream Column with Rectifier
- 10.4.1. Steady-State Design
- 10.4.2. Dynamic Control
- 10.5. Sidestream Purge Column
- 10.5.1. Steady-State Design
- 10.5.2. Dynamic Control
- 10.6. Conclusions
- 11. Control of Petroleum Fractionators
- 11.1. Petroleum Fractions
- 11.2. Characterization Crude Oil
- 11.3. Steady-State Design of Preflash Column
- 11.4. Control of Preflash Column
- 11.5. Steady-State Design of Pipestill
- 11.5.1. Overview of Steady-State Design
- 11.5.2. Configuring the Pipestill in Aspen Plus
- 11.5.3. Effects of Design Parameters
- 11.6. Control of Pipestill
- 11.7. Conclusions
- References
- 12. Divided-Wall (Petlyuk) Columns
- 12.1. Introduction
- 12.2. Steady-State Design
- 12.2.1. MultiFrac Model
- 12.2.2. RadFrac Model
- 12.3. Control of the Divided-Wall Column
- 12.3.1. Control Structure
- 12.3.2. Implementation in Aspen Dynamics
- 12.3.3. Dynamic Results
- 12.4. Control of the Conventional Column Process.
- 12.4.1. Control Structure
- 12.4.2. Dynamic Results and Comparisons
- 12.5. Conclusions and Discussion
- References
- 13. Dynamic Safety Analysis
- 13.1. Introduction
- 13.2. Safety Scenarios
- 13.3. Process Studied
- 13.4. Basic RadFrac Models
- 13.4.1. Constant Duty Model
- 13.4.2. Constant Temperature Model
- 13.4.3. LMTD Model
- 13.4.4. Condensing or Evaporating Medium Models
- 13.4.5. Dynamic Model for Reboiler
- 13.5. RadFrac Model with Explicit Heat-Exchanger Dynamics
- 13.5.1. Column
- 13.5.2. Condenser
- 13.5.3. Reflux Drum
- 13.5.4. Liquid Split
- 13.5.5. Reboiler
- 13.6. Dynamic Simulations
- 13.6.1. Base Case Control Structure
- 13.6.2. Rigorous Case Control Structure
- 13.7.Comparison of Dynamic Responses
- 13.7.1. Condenser Cooling Failure
- 13.7.2. Heat-Input Surge
- 13.8. Other Issues
- 13.9. Conclusions
- Reference
- 14. Carbon Dioxide Capture
- 14.1. Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants.
- 14.1.1. Process Design
- 14.1.2. Simulation Issues
- 14.1.3. Plantwide Control Structure
- 14.1.4. Dynamic Performance
- 14.2. Carbon Dioxide Removal in High-Pressure IGCC Power Plants
- 14.2.1. Design
- 14.2.2. Plantwide Control Structure
- 14.2.3. Dynamic Performance
- 14.3. Conclusions
- References
- 15. Distillation Turndown
- 15.1. Introduction
- 15.2. Control Problem
- 15.2.1. Two-Temperature Control
- 15.2.2. Valve-Position Control
- 15.2.3. Recycle Control
- 15.3. Process Studied
- 15.4. Dynamic Performance for Ramp Disturbances
- 15.4.1. Two-Temperature Control
- 15.4.2. VPC Control
- 15.4.3. Recycle Control
- 15.4.4.Comparison
- 15.5. Dynamic Performance for Step Disturbances
- 15.5.1. Two-Temperature Control
- 15.5.2. VPC Control
- 15.5.3. Recycle Control
- 15.6. Other Control Structures
- 15.6.1. No Temperature Control
- 15.6.2. Dual Temperature Control
- 15.7. Conclusions
- References.
- 16. Pressure-Compensated Temperature Control in Distillation Columns
- 16.1. Introduction
- 16.2. Numerical Example Studied
- 16.3. Conventional Control Structure Selection
- 16.4. Temperature/Pressure/Composition Relationships
- 16.5. Implementation in Aspen Dynamics
- 16.6.Comparison of Dynamic Results
- 16.6.1. Feed Flow Rate Disturbances
- 16.6.2. Pressure Disturbances
- 16.7. Conclusions
- References
- 17. Ethanol Dehydration
- 17.1. Introduction
- 17.2. Optimization of the Beer Still (Preconcentrator)
- 17.3. Optimization of the Azeotropic and Recovery Columns
- 17.3.1. Optimum Feed Locations
- 17.3.2. Optimum Number of Stages
- 17.4. Optimization of the Entire Process
- 17.5. Cyclohexane Entrainer
- 17.6. Flowsheet Recycle Convergence
- 17.7. Conclusions
- References
- 18. External Reset Feedback to Prevent Reset Windup
- 18.1. Introduction
- 18.2. External Reset Feedback Circuit Implementation
- 18.2.1. Generate the Error Signal.
- 18.2.2. Multiply by Controller Gain
- 18.2.3. Add the Output of Lag
- 18.2.4. Select Lower Signal
- 18.2.5. Setting up the Lag Block
- 18.3. Flash Tank Example
- 18.3.1. Process and Normal Control Structure
- 18.3.2. Override Control Structure Without External Reset Feedback
- 18.3.3. Override Control Structure with External Reset Feedback
- 18.4. Distillation Column Example
- 18.4.1. Normal Control Structure
- 18.4.2. Normal and Override Controllers Without External Reset
- 18.4.3. Normal and Override Controllers with External Reset Feedback
- 18.5. Conclusions
- References.