Distillation design and control using Aspen simulation /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Luyben, William L.
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, N.J. : Wiley, [2013]
Έκδοση:2nd ed.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Fundamentals of Vapor
  • Liquid
  • Equilibrium (VLE)
  • 1.1. Vapor Pressure
  • 1.2. Binary VLE Phase Diagrams
  • 1.3. Physical Property Methods
  • 1.4. Relative Volatility
  • 1.5. Bubble Point Calculations
  • 1.6. Ternary Diagrams
  • 1.7. VLE Nonideality
  • 1.8. Residue Curves for Ternary Systems
  • 1.9. Distillation Boundaries
  • 1.10. Conclusions
  • Reference
  • 2. Analysis of Distillation Columns
  • 2.1. Design Degrees of Freedom
  • 2.2. Binary McCabe
  • Thiele Method
  • 2.2.1. Operating Lines
  • 2.2.2.q-Line
  • 2.2.3. Stepping Off Trays
  • 2.2.4. Effect of Parameters
  • 2.2.5. Limiting Conditions
  • 2.3. Approximate Multicomponent Methods
  • 2.3.1. Fenske Equation for Minimum Number of Trays
  • 2.3.2. Underwood Equations for Minimum Reflux Ratio
  • 2.4. Conclusions
  • 3. Setting Up a Steady-State Simulation
  • 3.1. Configuring a New Simulation
  • 3.2. Specifying Chemical Components and Physical Properties
  • 3.3. Specifying Stream Properties.
  • 3.4. Specifying Parameters of Equipment
  • 3.4.1. Column C1
  • 3.4.2. Valves and Pumps
  • 3.5. Running the Simulation
  • 3.6. Using Design Spec/Vary Function
  • 3.7. Finding the Optimum Feed Tray and Minimum Conditions
  • 3.7.1. Optimum Feed Tray
  • 3.7.2. Minimum Reflux Ratio
  • 3.7.3. Minimum Number of Trays
  • 3.8. Column Sizing
  • 3.8.1. Length
  • 3.8.2. Diameter
  • 3.9. Conceptual Design
  • 3.10. Conclusions
  • 4. Distillation Economic Optimization
  • 4.1. Heuristic Optimization
  • 4.1.1. Set Total Trays to Twice Minimum Number of Trays
  • 4.1.2. Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio
  • 4.2. Economic Basis
  • 4.3. Results
  • 4.4. Operating Optimization
  • 4.5. Optimum Pressure for Vacuum Columns
  • 4.6. Conclusions
  • 5. More Complex Distillation Systems
  • 5.1. Extractive Distillation
  • 5.1.1. Design
  • 5.1.2. Simulation Issues
  • 5.2. Ethanol Dehydration
  • 5.2.1. VLLE Behavior
  • 5.2.2. Process Flowsheet Simulation
  • 5.2.3. Converging the Flowsheet.
  • 5.3. Pressure-Swing Azeotropic Distillation
  • 5.4. Heat-Integrated Columns
  • 5.4.1. Flowsheet
  • 5.4.2. Converging for Neat Operation
  • 5.5. Conclusions
  • 6. Steady-State Calculations for Control Structure Selection
  • 6.1. Control Structure Alternatives
  • 6.1.1. Dual-Composition Control
  • 6.1.2. Single-End Control
  • 6.2. Feed Composition Sensitivity Analysis (ZSA)
  • 6.3. Temperature Control Tray Selection
  • 6.3.1. Summary of Methods
  • 6.3.2. Binary Propane/Isobutane System
  • 6.3.3. Ternary BTX System
  • 6.3.4. Ternary Azeotropic System
  • 6.4. Conclusions
  • Reference
  • 7. Converting from Steady-State to Dynamic Simulation
  • 7.1. Equipment Sizing
  • 7.2. Exporting to Aspen Dynamics
  • 7.3. Opening the Dynamic Simulation in Aspen Dynamics
  • 7.4. Installing Basic Controllers
  • 7.4.1. Reflux
  • 7.4.2. Issues
  • 7.5. Installing Temperature and Composition Controllers
  • 7.5.1. Tray Temperature Control
  • 7.5.2.Composition Control.
  • 7.5.3.Composition/Temperature Cascade Control
  • 7.6. Performance Evaluation
  • 7.6.1. Installing a Plot
  • 7.6.2. Importing Dynamic Results into Matlab
  • 7.6.3. Reboiler Heat Input to Feed Ratio
  • 7.6.4.Comparison of Temperature Control with Cascade CC/TC
  • 7.7. Conclusions
  • 8. Control of More Complex Columns
  • 8.1. Extractive Distillation Process
  • 8.1.1. Design
  • 8.1.2. Control Structure
  • 8.1.3. Dynamic Performance
  • 8.2. Columns with Partial Condensers
  • 8.2.1. Total Vapor Distillate
  • 8.2.2. Both Vapor and Liquid Distillate Streams
  • 8.3. Control of Heat-Integrated Distillation Columns
  • 8.3.1. Process Studied
  • 8.3.2. Heat Integration Relationships
  • 8.3.3. Control Structure
  • 8.3.4. Dynamic Performance
  • 8.4. Control of Azeotropic Columns/Decanter System
  • 8.4.1. Converting to Dynamics and Closing Recycle Loop
  • 8.4.2. Installing the Control Structure
  • 8.4.3. Performance
  • 8.4.4. Numerical Integration Issues
  • 8.5. Unusual Control Structure.
  • 8.5.1. Process Studied
  • 8.5.2. Economic Optimum Steady-State Design
  • 8.5.3. Control Structure Selection
  • 8.5.4. Dynamic Simulation Results
  • 8.5.5. Alternative Control Structures
  • 8.5.6. Conclusions
  • 8.6. Conclusions
  • References
  • 9. Reactive Distillation
  • 9.1. Introduction
  • 9.2. Types of Reactive Distillation Systems
  • 9.2.1. Single-Feed Reactions
  • 9.2.2. Irreversible Reaction with Heavy Product
  • 9.2.3. Neat Operation Versus Use of Excess Reactant
  • 9.3. TAME Process Basics
  • 9.3.1. Prereactor
  • 9.3.2. Reactive Column C1
  • 9.4. TAME Reaction Kinetics and VLE
  • 9.5. Plantwide Control Structure
  • 9.6. Conclusions
  • References
  • 10. Control of Sidestream Columns
  • 10.1. Liquid Sidestream Column
  • 10.1.1. Steady-State Design
  • 10.1.2. Dynamic Control
  • 10.2. Vapor Sidestream Column
  • 10.2.1. Steady-State Design
  • 10.2.2. Dynamic Control
  • 10.3. Liquid Sidestream Column with Stripper
  • 10.3.1. Steady-State Design
  • 10.3.2. Dynamic Control.
  • 10.4. Vapor Sidestream Column with Rectifier
  • 10.4.1. Steady-State Design
  • 10.4.2. Dynamic Control
  • 10.5. Sidestream Purge Column
  • 10.5.1. Steady-State Design
  • 10.5.2. Dynamic Control
  • 10.6. Conclusions
  • 11. Control of Petroleum Fractionators
  • 11.1. Petroleum Fractions
  • 11.2. Characterization Crude Oil
  • 11.3. Steady-State Design of Preflash Column
  • 11.4. Control of Preflash Column
  • 11.5. Steady-State Design of Pipestill
  • 11.5.1. Overview of Steady-State Design
  • 11.5.2. Configuring the Pipestill in Aspen Plus
  • 11.5.3. Effects of Design Parameters
  • 11.6. Control of Pipestill
  • 11.7. Conclusions
  • References
  • 12. Divided-Wall (Petlyuk) Columns
  • 12.1. Introduction
  • 12.2. Steady-State Design
  • 12.2.1. MultiFrac Model
  • 12.2.2. RadFrac Model
  • 12.3. Control of the Divided-Wall Column
  • 12.3.1. Control Structure
  • 12.3.2. Implementation in Aspen Dynamics
  • 12.3.3. Dynamic Results
  • 12.4. Control of the Conventional Column Process.
  • 12.4.1. Control Structure
  • 12.4.2. Dynamic Results and Comparisons
  • 12.5. Conclusions and Discussion
  • References
  • 13. Dynamic Safety Analysis
  • 13.1. Introduction
  • 13.2. Safety Scenarios
  • 13.3. Process Studied
  • 13.4. Basic RadFrac Models
  • 13.4.1. Constant Duty Model
  • 13.4.2. Constant Temperature Model
  • 13.4.3. LMTD Model
  • 13.4.4. Condensing or Evaporating Medium Models
  • 13.4.5. Dynamic Model for Reboiler
  • 13.5. RadFrac Model with Explicit Heat-Exchanger Dynamics
  • 13.5.1. Column
  • 13.5.2. Condenser
  • 13.5.3. Reflux Drum
  • 13.5.4. Liquid Split
  • 13.5.5. Reboiler
  • 13.6. Dynamic Simulations
  • 13.6.1. Base Case Control Structure
  • 13.6.2. Rigorous Case Control Structure
  • 13.7.Comparison of Dynamic Responses
  • 13.7.1. Condenser Cooling Failure
  • 13.7.2. Heat-Input Surge
  • 13.8. Other Issues
  • 13.9. Conclusions
  • Reference
  • 14. Carbon Dioxide Capture
  • 14.1. Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants.
  • 14.1.1. Process Design
  • 14.1.2. Simulation Issues
  • 14.1.3. Plantwide Control Structure
  • 14.1.4. Dynamic Performance
  • 14.2. Carbon Dioxide Removal in High-Pressure IGCC Power Plants
  • 14.2.1. Design
  • 14.2.2. Plantwide Control Structure
  • 14.2.3. Dynamic Performance
  • 14.3. Conclusions
  • References
  • 15. Distillation Turndown
  • 15.1. Introduction
  • 15.2. Control Problem
  • 15.2.1. Two-Temperature Control
  • 15.2.2. Valve-Position Control
  • 15.2.3. Recycle Control
  • 15.3. Process Studied
  • 15.4. Dynamic Performance for Ramp Disturbances
  • 15.4.1. Two-Temperature Control
  • 15.4.2. VPC Control
  • 15.4.3. Recycle Control
  • 15.4.4.Comparison
  • 15.5. Dynamic Performance for Step Disturbances
  • 15.5.1. Two-Temperature Control
  • 15.5.2. VPC Control
  • 15.5.3. Recycle Control
  • 15.6. Other Control Structures
  • 15.6.1. No Temperature Control
  • 15.6.2. Dual Temperature Control
  • 15.7. Conclusions
  • References.
  • 16. Pressure-Compensated Temperature Control in Distillation Columns
  • 16.1. Introduction
  • 16.2. Numerical Example Studied
  • 16.3. Conventional Control Structure Selection
  • 16.4. Temperature/Pressure/Composition Relationships
  • 16.5. Implementation in Aspen Dynamics
  • 16.6.Comparison of Dynamic Results
  • 16.6.1. Feed Flow Rate Disturbances
  • 16.6.2. Pressure Disturbances
  • 16.7. Conclusions
  • References
  • 17. Ethanol Dehydration
  • 17.1. Introduction
  • 17.2. Optimization of the Beer Still (Preconcentrator)
  • 17.3. Optimization of the Azeotropic and Recovery Columns
  • 17.3.1. Optimum Feed Locations
  • 17.3.2. Optimum Number of Stages
  • 17.4. Optimization of the Entire Process
  • 17.5. Cyclohexane Entrainer
  • 17.6. Flowsheet Recycle Convergence
  • 17.7. Conclusions
  • References
  • 18. External Reset Feedback to Prevent Reset Windup
  • 18.1. Introduction
  • 18.2. External Reset Feedback Circuit Implementation
  • 18.2.1. Generate the Error Signal.
  • 18.2.2. Multiply by Controller Gain
  • 18.2.3. Add the Output of Lag
  • 18.2.4. Select Lower Signal
  • 18.2.5. Setting up the Lag Block
  • 18.3. Flash Tank Example
  • 18.3.1. Process and Normal Control Structure
  • 18.3.2. Override Control Structure Without External Reset Feedback
  • 18.3.3. Override Control Structure with External Reset Feedback
  • 18.4. Distillation Column Example
  • 18.4.1. Normal Control Structure
  • 18.4.2. Normal and Override Controllers Without External Reset
  • 18.4.3. Normal and Override Controllers with External Reset Feedback
  • 18.5. Conclusions
  • References.