Bio-Nanomaterials : designing materials inspired by nature /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pompe, Wolfgang (Συγγραφέας), Rödel, Gerhard (Συγγραφέας), Weiss, Hans-Jürgen (Physicist) (Συγγραφέας), Mertig, Michael (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim : Wiley-VCH, [2013]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 07911nam a2200673 4500
001 ocn842881738
003 OCoLC
005 20170124070123.1
006 m o d
007 cr cnu---unuuu
008 130510s2013 gw a ob 001 0 eng d
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d N$T  |d E7B  |d CDX  |d OCLCQ  |d CUI  |d DG1  |d OCLCA  |d OCLCQ  |d HEBIS  |d YDXCP  |d DEBBG  |d UV0  |d OCLCQ  |d LOA  |d DG1  |d K6U  |d GrThAP 
019 |a 961621949  |a 962623798 
020 |a 9783527655267  |q (electronic bk.) 
020 |a 9783527655298  |q (electronic bk.) 
020 |a 3527655298  |q (electronic bk.) 
020 |a 1299558976  |q (electronic bk.) 
020 |a 9781299558977  |q (electronic bk.) 
020 |a 3527655263  |q (electronic bk.) 
020 |z 9783527410156  |q (hbk.) 
020 |z 3527410155  |q (hbk.) 
029 1 |a AU@  |b 000051817000 
029 1 |a CHBIS  |b 010441931 
029 1 |a CHVBK  |b 33409237X 
029 1 |a DEBBG  |b BV041346177 
029 1 |a DEBBG  |b BV041906847 
029 1 |a NZ1  |b 15194659 
029 1 |a NZ1  |b 15340111 
029 1 |a NZ1  |b 16062183 
029 1 |a DKDLA  |b 820120-katalog:000731679 
035 |a (OCoLC)842881738  |z (OCoLC)961621949  |z (OCoLC)962623798 
050 4 |a TP248.25.N35 
072 7 |a SCI  |x 010000  |2 bisacsh 
082 0 4 |a 660.6  |2 23 
049 |a MAIN 
100 1 |a Pompe, Wolfgang,  |e author. 
245 1 0 |a Bio-Nanomaterials :  |b designing materials inspired by nature /  |c Wolfgang Pompe, Gerhard Rödel, Hans-Jürgen Weiss, Michael Mertig. 
264 1 |a Weinheim :  |b Wiley-VCH,  |c [2013] 
300 |a 1 online resource (xi, 458 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Machine generated contents note: 1.1. Case Studies -- 1.1.1. Nudeic Acids -- 1.1.2. Proteins -- 1.1.3. Carbohydrates -- 1.1.4. Lipids -- 1.2. Basic Principles -- 1.2.1. The Persistence Lengths of Biopolymer Chains -- 1.2.2. Equilibrium Shape of a Semiflexible Polymer Chain -- 1.2.3. The Load-Extension Diagram of a Semiflexible Polymer Chain -- 1.2.4. Cooperativity -- 1.2.5. Protein Folding -- 1.2.6. DNA Melting Transition -- 1.2.7. Biocatalytic Reactions -- 1.3. Bioengineering -- 1.3.1. Biointerfacing -- 1.3.2. DNA-Based Nanotechnology -- 1.3.2.1. Biomolecular Templates for Submicrometer Electronic Circuitries -- 1.3.2.2. DNA-Based Nanoprobes -- 1.3.3. Protein-Based Nanotechnology -- References -- 2.1. Case Study -- 2.2. Basic Principles -- 2.2.1.Complementary Interaction between Proteins and Ligands -- 2.2.2. Cooperative Protein-Ligand Interaction -- 2.2.3. The Enzyme-Linked Immunosorbent Assay -- 2.3. Engineering of Biomolecular Recognition Systems -- 2.3.1. Engineering of Protein-Based Bioaffine Materials -- 2.3.1.1. Interfacing Mechanisms of Proteins via Bioaffinity -- 2.3.2. Engineering of Sensing Biofunctionalized Materials -- 2.3.2.1. Design Principles of Biosensors -- 2.3.2.2. Integration of Sensing Biological Elements and Transducer Units -- References -- 3.1. Case Study -- 3.2. Basic Principles -- 3.2.1. The Cellular Mechanotransduction System -- 3.2.2. Mechanical Impact of the ECM on Cell Development -- 3.2.3. Influence of the Microenvironment Topology on the Cell Spreading and Development -- 3.3. Bioengineering -- 3.3.1. The Basic Approach and Goals -- 3.3.2. Tailored Surfaces for In Vitro Culturing of Cells -- 3.3.2.1.A Modular Polymer Platform for Mechanically Regulated Cell Culturing at Interfaces -- 3.3.2.2. Regulation of Cell Fate by Nanostructured Surfaces -- 3.3.3. Three-Dimensional Scaffolds for Tissue Engineering -- 3.3.4. Switchable Substrates and Matrices -- References -- 4.1. Case Studies -- 4.2. Basic Principles -- 4.3. Bioengineering -- References -- 5.1. Case Studies -- 5.2. Basic Principles -- 5.2.1. Preparation of Silica-Based Xerogels -- 5.2.2. Biological Properties of Silica-Based Biocers -- 5.3. Bioengineering -- 5.3.1. Bioactive Sol-Gel Coatings and Composites -- 5.3.2. Biocatalytic Sol-Gel Coatings -- 5.3.3. Bioremediation -- 5.3.4. Cell-Based Bioreactors -- 5.3.5. Silica-Based Controlled Release Structures -- 5.3.6. Patterned Structures -- 5.4. Silicified Geological Biomaterials -- References -- 6.1. Case Studies -- 6.2. Basic Principles -- 6.2.1. Precipitation -- 6.2.1.1. Thermodynamics of Mineralization -- 6.2.1.2. Kinetics of Mineralization -- 6.2.2. Phenomenology of Biomineralization -- 6.2.3. Basic Mechanisms in Biomineralization -- 6.2.4. Biologically Mediated Mineralization: the Competition between Inhibition and Growth -- 6.2.4.1. Effect of Polypeptides on Precipitate Habitus -- 6.2.4.2. The Formation of Metastable Polymorphs -- 6.2.5. Biologically Induced Mineralization: Role of the Epicellular Space and the Extracellular Polymeric Substances -- 6.2.6. Biologically Controlled Mineralization: Molecular Preorganization, Recognition, and Vectorial Growth -- 6.2.6.1. Intracellular Mineralization -- 6.2.6.2. Epi- and Extracellular Mineralization -- 6.2.7. Mineralization of Diatom Shells: an Example of Unicellular Hierarchical Structures -- 6.2.8. Mineralization of Bone: an Example of Multicellular Biomineralization -- 6.2.8.1. The Mesoscopic Architecture of Bone -- 6.2.8.2. Bone Remodeling and Bone Repair -- 6.2.8.3. The Nanoscopic Structure of the Extracelluar Matrix of Bone -- 6.2.8.4. The Polymer-Induced Liquid Precursor Process -- 6.2.8.5. Scale-Dependent Mechanical Behavior of Bone -- 6.2.9. Ancient Evidence of Biomineralization -- 6.2.9.1. Stromatolites: the Oldest Fossils by Biogenic Mineralization -- 6.3. Bioengineering -- 6.3.1. Bacteria-Derived Materials Development -- 6.3.1.1. Bio-Palladium: Biologically Controlled Growth of Metallic Nanoparticles -- 6.3.1.2. Biogenic Ion Exchange Materials -- 6.3.2. Bio-Inspired Design of Mineralized Collagen and Bone-Like Materials -- 6.3.2.1. Biomimetic Growth of Apatite-Gelatin Nanocomposites -- 6.3.2.2. Biomimetic Manufacturing of Mineralized Collagen Scaffolds -- 6.3.3. Biomimicking of Bone Tissue -- 6.3.3.1. Natural versus Synthetic Biopolymers for Scaffold Design -- 6.3.3.2. Protein-Engineered Synthetic Polymers -- 6.3.3.3. Protein-Engineered Collagen Matrices -- 6.3.4. Microbial Carbonate Precipitation in Construction Materials -- 6.3.5. The Potential of Biomineralization for Carbon Capture and Storage (CCS) -- References -- 7.1. Case Study -- 7.2. Basic Principles -- 7.2.1. Basic Phenomena of Self-Assembly and Self-Organization -- 7.2.2. Self-Assembly of Protein Filaments: the Cytoskeleton -- 7.2.3. Self-Assembly of 3-Sheets: the Amyloid Fibrils -- 7.2.4. Self Assembly of Two-Dimensional Protein Lattices: the Bacterial Surface Layers (S-Layers) -- 7.2.5. Self-Organized Structures of Lipids -- 7.2.6. Liquid Crystals -- 7.3. Bioengineering -- 7.3.1. In Vitro Self-Assembly of Large-Scale Nanostructured Biomaterials -- 7.3.2. Template-Directed Assembly of Artificial Nanopartides and Nanowires -- 7.3.3. Template-Free Directed Self-Assembly of Nanopartides -- References -- A.1. Fundamental Constants -- A.2. Table of SI Base Units -- A.3. Table of Derived Units -- A.4. Magnitudes -- A.4.1. Sizes -- A.4.2. Energies -- A.4.3. Rates and Diffusion Constants. 
650 0 |a Biotechnology. 
650 0 |a Nanotechnology. 
650 0 |a Nanostructured materials  |x Synthesis. 
650 0 |a Biomimicry. 
650 7 |a SCIENCE  |x Biotechnology.  |2 bisacsh 
650 7 |a Nanobiotechnologie  |2 gnd  |0 (DE-588)7657744-2 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
700 1 |a Rödel, Gerhard,  |e author. 
700 1 |a Weiss, Hans-Jürgen  |c (Physicist),  |e author. 
700 1 |a Mertig, Michael,  |e author. 
776 0 8 |i Print version:  |a Pompe, Wolfgang.  |t Bio-nanomaterials.  |d Weinheim : Wiley-VCH, [2013]  |z 9783527410156  |w (OCoLC)854179532 
856 4 0 |u https://doi.org/10.1002/9783527655267  |z Full Text via HEAL-Link 
994 |a 92  |b DG1