|
|
|
|
LEADER |
07911nam a2200673 4500 |
001 |
ocn842881738 |
003 |
OCoLC |
005 |
20170124070123.1 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130510s2013 gw a ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e rda
|e pn
|c IDEBK
|d N$T
|d E7B
|d CDX
|d OCLCQ
|d CUI
|d DG1
|d OCLCA
|d OCLCQ
|d HEBIS
|d YDXCP
|d DEBBG
|d UV0
|d OCLCQ
|d LOA
|d DG1
|d K6U
|d GrThAP
|
019 |
|
|
|a 961621949
|a 962623798
|
020 |
|
|
|a 9783527655267
|q (electronic bk.)
|
020 |
|
|
|a 9783527655298
|q (electronic bk.)
|
020 |
|
|
|a 3527655298
|q (electronic bk.)
|
020 |
|
|
|a 1299558976
|q (electronic bk.)
|
020 |
|
|
|a 9781299558977
|q (electronic bk.)
|
020 |
|
|
|a 3527655263
|q (electronic bk.)
|
020 |
|
|
|z 9783527410156
|q (hbk.)
|
020 |
|
|
|z 3527410155
|q (hbk.)
|
029 |
1 |
|
|a AU@
|b 000051817000
|
029 |
1 |
|
|a CHBIS
|b 010441931
|
029 |
1 |
|
|a CHVBK
|b 33409237X
|
029 |
1 |
|
|a DEBBG
|b BV041346177
|
029 |
1 |
|
|a DEBBG
|b BV041906847
|
029 |
1 |
|
|a NZ1
|b 15194659
|
029 |
1 |
|
|a NZ1
|b 15340111
|
029 |
1 |
|
|a NZ1
|b 16062183
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:000731679
|
035 |
|
|
|a (OCoLC)842881738
|z (OCoLC)961621949
|z (OCoLC)962623798
|
050 |
|
4 |
|a TP248.25.N35
|
072 |
|
7 |
|a SCI
|x 010000
|2 bisacsh
|
082 |
0 |
4 |
|a 660.6
|2 23
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Pompe, Wolfgang,
|e author.
|
245 |
1 |
0 |
|a Bio-Nanomaterials :
|b designing materials inspired by nature /
|c Wolfgang Pompe, Gerhard Rödel, Hans-Jürgen Weiss, Michael Mertig.
|
264 |
|
1 |
|a Weinheim :
|b Wiley-VCH,
|c [2013]
|
300 |
|
|
|a 1 online resource (xi, 458 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Machine generated contents note: 1.1. Case Studies -- 1.1.1. Nudeic Acids -- 1.1.2. Proteins -- 1.1.3. Carbohydrates -- 1.1.4. Lipids -- 1.2. Basic Principles -- 1.2.1. The Persistence Lengths of Biopolymer Chains -- 1.2.2. Equilibrium Shape of a Semiflexible Polymer Chain -- 1.2.3. The Load-Extension Diagram of a Semiflexible Polymer Chain -- 1.2.4. Cooperativity -- 1.2.5. Protein Folding -- 1.2.6. DNA Melting Transition -- 1.2.7. Biocatalytic Reactions -- 1.3. Bioengineering -- 1.3.1. Biointerfacing -- 1.3.2. DNA-Based Nanotechnology -- 1.3.2.1. Biomolecular Templates for Submicrometer Electronic Circuitries -- 1.3.2.2. DNA-Based Nanoprobes -- 1.3.3. Protein-Based Nanotechnology -- References -- 2.1. Case Study -- 2.2. Basic Principles -- 2.2.1.Complementary Interaction between Proteins and Ligands -- 2.2.2. Cooperative Protein-Ligand Interaction -- 2.2.3. The Enzyme-Linked Immunosorbent Assay -- 2.3. Engineering of Biomolecular Recognition Systems -- 2.3.1. Engineering of Protein-Based Bioaffine Materials -- 2.3.1.1. Interfacing Mechanisms of Proteins via Bioaffinity -- 2.3.2. Engineering of Sensing Biofunctionalized Materials -- 2.3.2.1. Design Principles of Biosensors -- 2.3.2.2. Integration of Sensing Biological Elements and Transducer Units -- References -- 3.1. Case Study -- 3.2. Basic Principles -- 3.2.1. The Cellular Mechanotransduction System -- 3.2.2. Mechanical Impact of the ECM on Cell Development -- 3.2.3. Influence of the Microenvironment Topology on the Cell Spreading and Development -- 3.3. Bioengineering -- 3.3.1. The Basic Approach and Goals -- 3.3.2. Tailored Surfaces for In Vitro Culturing of Cells -- 3.3.2.1.A Modular Polymer Platform for Mechanically Regulated Cell Culturing at Interfaces -- 3.3.2.2. Regulation of Cell Fate by Nanostructured Surfaces -- 3.3.3. Three-Dimensional Scaffolds for Tissue Engineering -- 3.3.4. Switchable Substrates and Matrices -- References -- 4.1. Case Studies -- 4.2. Basic Principles -- 4.3. Bioengineering -- References -- 5.1. Case Studies -- 5.2. Basic Principles -- 5.2.1. Preparation of Silica-Based Xerogels -- 5.2.2. Biological Properties of Silica-Based Biocers -- 5.3. Bioengineering -- 5.3.1. Bioactive Sol-Gel Coatings and Composites -- 5.3.2. Biocatalytic Sol-Gel Coatings -- 5.3.3. Bioremediation -- 5.3.4. Cell-Based Bioreactors -- 5.3.5. Silica-Based Controlled Release Structures -- 5.3.6. Patterned Structures -- 5.4. Silicified Geological Biomaterials -- References -- 6.1. Case Studies -- 6.2. Basic Principles -- 6.2.1. Precipitation -- 6.2.1.1. Thermodynamics of Mineralization -- 6.2.1.2. Kinetics of Mineralization -- 6.2.2. Phenomenology of Biomineralization -- 6.2.3. Basic Mechanisms in Biomineralization -- 6.2.4. Biologically Mediated Mineralization: the Competition between Inhibition and Growth -- 6.2.4.1. Effect of Polypeptides on Precipitate Habitus -- 6.2.4.2. The Formation of Metastable Polymorphs -- 6.2.5. Biologically Induced Mineralization: Role of the Epicellular Space and the Extracellular Polymeric Substances -- 6.2.6. Biologically Controlled Mineralization: Molecular Preorganization, Recognition, and Vectorial Growth -- 6.2.6.1. Intracellular Mineralization -- 6.2.6.2. Epi- and Extracellular Mineralization -- 6.2.7. Mineralization of Diatom Shells: an Example of Unicellular Hierarchical Structures -- 6.2.8. Mineralization of Bone: an Example of Multicellular Biomineralization -- 6.2.8.1. The Mesoscopic Architecture of Bone -- 6.2.8.2. Bone Remodeling and Bone Repair -- 6.2.8.3. The Nanoscopic Structure of the Extracelluar Matrix of Bone -- 6.2.8.4. The Polymer-Induced Liquid Precursor Process -- 6.2.8.5. Scale-Dependent Mechanical Behavior of Bone -- 6.2.9. Ancient Evidence of Biomineralization -- 6.2.9.1. Stromatolites: the Oldest Fossils by Biogenic Mineralization -- 6.3. Bioengineering -- 6.3.1. Bacteria-Derived Materials Development -- 6.3.1.1. Bio-Palladium: Biologically Controlled Growth of Metallic Nanoparticles -- 6.3.1.2. Biogenic Ion Exchange Materials -- 6.3.2. Bio-Inspired Design of Mineralized Collagen and Bone-Like Materials -- 6.3.2.1. Biomimetic Growth of Apatite-Gelatin Nanocomposites -- 6.3.2.2. Biomimetic Manufacturing of Mineralized Collagen Scaffolds -- 6.3.3. Biomimicking of Bone Tissue -- 6.3.3.1. Natural versus Synthetic Biopolymers for Scaffold Design -- 6.3.3.2. Protein-Engineered Synthetic Polymers -- 6.3.3.3. Protein-Engineered Collagen Matrices -- 6.3.4. Microbial Carbonate Precipitation in Construction Materials -- 6.3.5. The Potential of Biomineralization for Carbon Capture and Storage (CCS) -- References -- 7.1. Case Study -- 7.2. Basic Principles -- 7.2.1. Basic Phenomena of Self-Assembly and Self-Organization -- 7.2.2. Self-Assembly of Protein Filaments: the Cytoskeleton -- 7.2.3. Self-Assembly of 3-Sheets: the Amyloid Fibrils -- 7.2.4. Self Assembly of Two-Dimensional Protein Lattices: the Bacterial Surface Layers (S-Layers) -- 7.2.5. Self-Organized Structures of Lipids -- 7.2.6. Liquid Crystals -- 7.3. Bioengineering -- 7.3.1. In Vitro Self-Assembly of Large-Scale Nanostructured Biomaterials -- 7.3.2. Template-Directed Assembly of Artificial Nanopartides and Nanowires -- 7.3.3. Template-Free Directed Self-Assembly of Nanopartides -- References -- A.1. Fundamental Constants -- A.2. Table of SI Base Units -- A.3. Table of Derived Units -- A.4. Magnitudes -- A.4.1. Sizes -- A.4.2. Energies -- A.4.3. Rates and Diffusion Constants.
|
650 |
|
0 |
|a Biotechnology.
|
650 |
|
0 |
|a Nanotechnology.
|
650 |
|
0 |
|a Nanostructured materials
|x Synthesis.
|
650 |
|
0 |
|a Biomimicry.
|
650 |
|
7 |
|a SCIENCE
|x Biotechnology.
|2 bisacsh
|
650 |
|
7 |
|a Nanobiotechnologie
|2 gnd
|0 (DE-588)7657744-2
|
655 |
|
4 |
|a Electronic books.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
700 |
1 |
|
|a Rödel, Gerhard,
|e author.
|
700 |
1 |
|
|a Weiss, Hans-Jürgen
|c (Physicist),
|e author.
|
700 |
1 |
|
|a Mertig, Michael,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Pompe, Wolfgang.
|t Bio-nanomaterials.
|d Weinheim : Wiley-VCH, [2013]
|z 9783527410156
|w (OCoLC)854179532
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9783527655267
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|