Bio-Nanomaterials : designing materials inspired by nature /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pompe, Wolfgang (Συγγραφέας), Rödel, Gerhard (Συγγραφέας), Weiss, Hans-Jürgen (Physicist) (Συγγραφέας), Mertig, Michael (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim : Wiley-VCH, [2013]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: 1.1. Case Studies
  • 1.1.1. Nudeic Acids
  • 1.1.2. Proteins
  • 1.1.3. Carbohydrates
  • 1.1.4. Lipids
  • 1.2. Basic Principles
  • 1.2.1. The Persistence Lengths of Biopolymer Chains
  • 1.2.2. Equilibrium Shape of a Semiflexible Polymer Chain
  • 1.2.3. The Load-Extension Diagram of a Semiflexible Polymer Chain
  • 1.2.4. Cooperativity
  • 1.2.5. Protein Folding
  • 1.2.6. DNA Melting Transition
  • 1.2.7. Biocatalytic Reactions
  • 1.3. Bioengineering
  • 1.3.1. Biointerfacing
  • 1.3.2. DNA-Based Nanotechnology
  • 1.3.2.1. Biomolecular Templates for Submicrometer Electronic Circuitries
  • 1.3.2.2. DNA-Based Nanoprobes
  • 1.3.3. Protein-Based Nanotechnology
  • References
  • 2.1. Case Study
  • 2.2. Basic Principles
  • 2.2.1.Complementary Interaction between Proteins and Ligands
  • 2.2.2. Cooperative Protein-Ligand Interaction
  • 2.2.3. The Enzyme-Linked Immunosorbent Assay
  • 2.3. Engineering of Biomolecular Recognition Systems
  • 2.3.1. Engineering of Protein-Based Bioaffine Materials
  • 2.3.1.1. Interfacing Mechanisms of Proteins via Bioaffinity
  • 2.3.2. Engineering of Sensing Biofunctionalized Materials
  • 2.3.2.1. Design Principles of Biosensors
  • 2.3.2.2. Integration of Sensing Biological Elements and Transducer Units
  • References
  • 3.1. Case Study
  • 3.2. Basic Principles
  • 3.2.1. The Cellular Mechanotransduction System
  • 3.2.2. Mechanical Impact of the ECM on Cell Development
  • 3.2.3. Influence of the Microenvironment Topology on the Cell Spreading and Development
  • 3.3. Bioengineering
  • 3.3.1. The Basic Approach and Goals
  • 3.3.2. Tailored Surfaces for In Vitro Culturing of Cells
  • 3.3.2.1.A Modular Polymer Platform for Mechanically Regulated Cell Culturing at Interfaces
  • 3.3.2.2. Regulation of Cell Fate by Nanostructured Surfaces
  • 3.3.3. Three-Dimensional Scaffolds for Tissue Engineering
  • 3.3.4. Switchable Substrates and Matrices
  • References
  • 4.1. Case Studies
  • 4.2. Basic Principles
  • 4.3. Bioengineering
  • References
  • 5.1. Case Studies
  • 5.2. Basic Principles
  • 5.2.1. Preparation of Silica-Based Xerogels
  • 5.2.2. Biological Properties of Silica-Based Biocers
  • 5.3. Bioengineering
  • 5.3.1. Bioactive Sol-Gel Coatings and Composites
  • 5.3.2. Biocatalytic Sol-Gel Coatings
  • 5.3.3. Bioremediation
  • 5.3.4. Cell-Based Bioreactors
  • 5.3.5. Silica-Based Controlled Release Structures
  • 5.3.6. Patterned Structures
  • 5.4. Silicified Geological Biomaterials
  • References
  • 6.1. Case Studies
  • 6.2. Basic Principles
  • 6.2.1. Precipitation
  • 6.2.1.1. Thermodynamics of Mineralization
  • 6.2.1.2. Kinetics of Mineralization
  • 6.2.2. Phenomenology of Biomineralization
  • 6.2.3. Basic Mechanisms in Biomineralization
  • 6.2.4. Biologically Mediated Mineralization: the Competition between Inhibition and Growth
  • 6.2.4.1. Effect of Polypeptides on Precipitate Habitus
  • 6.2.4.2. The Formation of Metastable Polymorphs
  • 6.2.5. Biologically Induced Mineralization: Role of the Epicellular Space and the Extracellular Polymeric Substances
  • 6.2.6. Biologically Controlled Mineralization: Molecular Preorganization, Recognition, and Vectorial Growth
  • 6.2.6.1. Intracellular Mineralization
  • 6.2.6.2. Epi- and Extracellular Mineralization
  • 6.2.7. Mineralization of Diatom Shells: an Example of Unicellular Hierarchical Structures
  • 6.2.8. Mineralization of Bone: an Example of Multicellular Biomineralization
  • 6.2.8.1. The Mesoscopic Architecture of Bone
  • 6.2.8.2. Bone Remodeling and Bone Repair
  • 6.2.8.3. The Nanoscopic Structure of the Extracelluar Matrix of Bone
  • 6.2.8.4. The Polymer-Induced Liquid Precursor Process
  • 6.2.8.5. Scale-Dependent Mechanical Behavior of Bone
  • 6.2.9. Ancient Evidence of Biomineralization
  • 6.2.9.1. Stromatolites: the Oldest Fossils by Biogenic Mineralization
  • 6.3. Bioengineering
  • 6.3.1. Bacteria-Derived Materials Development
  • 6.3.1.1. Bio-Palladium: Biologically Controlled Growth of Metallic Nanoparticles
  • 6.3.1.2. Biogenic Ion Exchange Materials
  • 6.3.2. Bio-Inspired Design of Mineralized Collagen and Bone-Like Materials
  • 6.3.2.1. Biomimetic Growth of Apatite-Gelatin Nanocomposites
  • 6.3.2.2. Biomimetic Manufacturing of Mineralized Collagen Scaffolds
  • 6.3.3. Biomimicking of Bone Tissue
  • 6.3.3.1. Natural versus Synthetic Biopolymers for Scaffold Design
  • 6.3.3.2. Protein-Engineered Synthetic Polymers
  • 6.3.3.3. Protein-Engineered Collagen Matrices
  • 6.3.4. Microbial Carbonate Precipitation in Construction Materials
  • 6.3.5. The Potential of Biomineralization for Carbon Capture and Storage (CCS)
  • References
  • 7.1. Case Study
  • 7.2. Basic Principles
  • 7.2.1. Basic Phenomena of Self-Assembly and Self-Organization
  • 7.2.2. Self-Assembly of Protein Filaments: the Cytoskeleton
  • 7.2.3. Self-Assembly of 3-Sheets: the Amyloid Fibrils
  • 7.2.4. Self Assembly of Two-Dimensional Protein Lattices: the Bacterial Surface Layers (S-Layers)
  • 7.2.5. Self-Organized Structures of Lipids
  • 7.2.6. Liquid Crystals
  • 7.3. Bioengineering
  • 7.3.1. In Vitro Self-Assembly of Large-Scale Nanostructured Biomaterials
  • 7.3.2. Template-Directed Assembly of Artificial Nanopartides and Nanowires
  • 7.3.3. Template-Free Directed Self-Assembly of Nanopartides
  • References
  • A.1. Fundamental Constants
  • A.2. Table of SI Base Units
  • A.3. Table of Derived Units
  • A.4. Magnitudes
  • A.4.1. Sizes
  • A.4.2. Energies
  • A.4.3. Rates and Diffusion Constants.