Bio-Nanomaterials : designing materials inspired by nature /
Κύριοι συγγραφείς: | , , , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Weinheim :
Wiley-VCH,
[2013]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1.1. Case Studies
- 1.1.1. Nudeic Acids
- 1.1.2. Proteins
- 1.1.3. Carbohydrates
- 1.1.4. Lipids
- 1.2. Basic Principles
- 1.2.1. The Persistence Lengths of Biopolymer Chains
- 1.2.2. Equilibrium Shape of a Semiflexible Polymer Chain
- 1.2.3. The Load-Extension Diagram of a Semiflexible Polymer Chain
- 1.2.4. Cooperativity
- 1.2.5. Protein Folding
- 1.2.6. DNA Melting Transition
- 1.2.7. Biocatalytic Reactions
- 1.3. Bioengineering
- 1.3.1. Biointerfacing
- 1.3.2. DNA-Based Nanotechnology
- 1.3.2.1. Biomolecular Templates for Submicrometer Electronic Circuitries
- 1.3.2.2. DNA-Based Nanoprobes
- 1.3.3. Protein-Based Nanotechnology
- References
- 2.1. Case Study
- 2.2. Basic Principles
- 2.2.1.Complementary Interaction between Proteins and Ligands
- 2.2.2. Cooperative Protein-Ligand Interaction
- 2.2.3. The Enzyme-Linked Immunosorbent Assay
- 2.3. Engineering of Biomolecular Recognition Systems
- 2.3.1. Engineering of Protein-Based Bioaffine Materials
- 2.3.1.1. Interfacing Mechanisms of Proteins via Bioaffinity
- 2.3.2. Engineering of Sensing Biofunctionalized Materials
- 2.3.2.1. Design Principles of Biosensors
- 2.3.2.2. Integration of Sensing Biological Elements and Transducer Units
- References
- 3.1. Case Study
- 3.2. Basic Principles
- 3.2.1. The Cellular Mechanotransduction System
- 3.2.2. Mechanical Impact of the ECM on Cell Development
- 3.2.3. Influence of the Microenvironment Topology on the Cell Spreading and Development
- 3.3. Bioengineering
- 3.3.1. The Basic Approach and Goals
- 3.3.2. Tailored Surfaces for In Vitro Culturing of Cells
- 3.3.2.1.A Modular Polymer Platform for Mechanically Regulated Cell Culturing at Interfaces
- 3.3.2.2. Regulation of Cell Fate by Nanostructured Surfaces
- 3.3.3. Three-Dimensional Scaffolds for Tissue Engineering
- 3.3.4. Switchable Substrates and Matrices
- References
- 4.1. Case Studies
- 4.2. Basic Principles
- 4.3. Bioengineering
- References
- 5.1. Case Studies
- 5.2. Basic Principles
- 5.2.1. Preparation of Silica-Based Xerogels
- 5.2.2. Biological Properties of Silica-Based Biocers
- 5.3. Bioengineering
- 5.3.1. Bioactive Sol-Gel Coatings and Composites
- 5.3.2. Biocatalytic Sol-Gel Coatings
- 5.3.3. Bioremediation
- 5.3.4. Cell-Based Bioreactors
- 5.3.5. Silica-Based Controlled Release Structures
- 5.3.6. Patterned Structures
- 5.4. Silicified Geological Biomaterials
- References
- 6.1. Case Studies
- 6.2. Basic Principles
- 6.2.1. Precipitation
- 6.2.1.1. Thermodynamics of Mineralization
- 6.2.1.2. Kinetics of Mineralization
- 6.2.2. Phenomenology of Biomineralization
- 6.2.3. Basic Mechanisms in Biomineralization
- 6.2.4. Biologically Mediated Mineralization: the Competition between Inhibition and Growth
- 6.2.4.1. Effect of Polypeptides on Precipitate Habitus
- 6.2.4.2. The Formation of Metastable Polymorphs
- 6.2.5. Biologically Induced Mineralization: Role of the Epicellular Space and the Extracellular Polymeric Substances
- 6.2.6. Biologically Controlled Mineralization: Molecular Preorganization, Recognition, and Vectorial Growth
- 6.2.6.1. Intracellular Mineralization
- 6.2.6.2. Epi- and Extracellular Mineralization
- 6.2.7. Mineralization of Diatom Shells: an Example of Unicellular Hierarchical Structures
- 6.2.8. Mineralization of Bone: an Example of Multicellular Biomineralization
- 6.2.8.1. The Mesoscopic Architecture of Bone
- 6.2.8.2. Bone Remodeling and Bone Repair
- 6.2.8.3. The Nanoscopic Structure of the Extracelluar Matrix of Bone
- 6.2.8.4. The Polymer-Induced Liquid Precursor Process
- 6.2.8.5. Scale-Dependent Mechanical Behavior of Bone
- 6.2.9. Ancient Evidence of Biomineralization
- 6.2.9.1. Stromatolites: the Oldest Fossils by Biogenic Mineralization
- 6.3. Bioengineering
- 6.3.1. Bacteria-Derived Materials Development
- 6.3.1.1. Bio-Palladium: Biologically Controlled Growth of Metallic Nanoparticles
- 6.3.1.2. Biogenic Ion Exchange Materials
- 6.3.2. Bio-Inspired Design of Mineralized Collagen and Bone-Like Materials
- 6.3.2.1. Biomimetic Growth of Apatite-Gelatin Nanocomposites
- 6.3.2.2. Biomimetic Manufacturing of Mineralized Collagen Scaffolds
- 6.3.3. Biomimicking of Bone Tissue
- 6.3.3.1. Natural versus Synthetic Biopolymers for Scaffold Design
- 6.3.3.2. Protein-Engineered Synthetic Polymers
- 6.3.3.3. Protein-Engineered Collagen Matrices
- 6.3.4. Microbial Carbonate Precipitation in Construction Materials
- 6.3.5. The Potential of Biomineralization for Carbon Capture and Storage (CCS)
- References
- 7.1. Case Study
- 7.2. Basic Principles
- 7.2.1. Basic Phenomena of Self-Assembly and Self-Organization
- 7.2.2. Self-Assembly of Protein Filaments: the Cytoskeleton
- 7.2.3. Self-Assembly of 3-Sheets: the Amyloid Fibrils
- 7.2.4. Self Assembly of Two-Dimensional Protein Lattices: the Bacterial Surface Layers (S-Layers)
- 7.2.5. Self-Organized Structures of Lipids
- 7.2.6. Liquid Crystals
- 7.3. Bioengineering
- 7.3.1. In Vitro Self-Assembly of Large-Scale Nanostructured Biomaterials
- 7.3.2. Template-Directed Assembly of Artificial Nanopartides and Nanowires
- 7.3.3. Template-Free Directed Self-Assembly of Nanopartides
- References
- A.1. Fundamental Constants
- A.2. Table of SI Base Units
- A.3. Table of Derived Units
- A.4. Magnitudes
- A.4.1. Sizes
- A.4.2. Energies
- A.4.3. Rates and Diffusion Constants.