Spectral clustering and biclustering : learning large graphs and contingency tables /

"Offering a timely and novel treatment of spectral clustering and biclustering of networks, this book bridges the gap between graph theory and statistics by giving answers to the demanding questions that arise when statisticians are confronted with large weighted graphs or rectangular arrays. T...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bolla, Marianna
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : Wiley, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06930nam a2200721 4500
001 ocn843455133
003 OCoLC
005 20170124071416.9
006 m o d
007 cr |||||||||||
008 130515s2013 enk ob 001 0 eng
010 |a  2013019810 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d CUS  |d DG1  |d NOC  |d YDXCP  |d E7B  |d OCLCF  |d UKMGB  |d RECBK  |d PUL  |d EBLCP  |d OCLCQ  |d COO  |d OCLCQ  |d LOA  |d GrThAP 
016 7 |a 016316500  |2 Uk 
019 |a 865013316  |a 961669507  |a 962586960  |a 966264124 
020 |a 9781118650714  |q (ePub) 
020 |a 1118650719  |q (ePub) 
020 |a 9781118650592  |q (MobiPocket) 
020 |a 111865059X  |q (MobiPocket) 
020 |a 9781118650707  |q (Adobe PDF) 
020 |a 1118650700  |q (Adobe PDF) 
020 |a 9781118650684  |q (electronic bk.) 
020 |a 1118650689  |q (electronic bk.) 
020 |a 1118344928  |q (hardback) 
020 |a 9781118344927  |q (hardback) 
020 |z 9781118344927  |q (hardback) 
029 1 |a AU@  |b 000051090707 
029 1 |a CHBIS  |b 009932773 
029 1 |a CHVBK  |b 302329498 
029 1 |a DKDLA  |b 820120-katalog:000664621 
029 1 |a NZ1  |b 15340540 
029 1 |a DEBBG  |b BV043395892 
035 |a (OCoLC)843455133  |z (OCoLC)865013316  |z (OCoLC)961669507  |z (OCoLC)962586960  |z (OCoLC)966264124 
042 |a pcc 
050 0 0 |a QA278 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 0 |a 515/.35  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a MAIN 
100 1 |a Bolla, Marianna. 
245 1 0 |a Spectral clustering and biclustering :  |b learning large graphs and contingency tables /  |c Marianna Bolla. 
264 1 |a Chichester, West Sussex, United Kingdom :  |b Wiley,  |c 2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "Offering a timely and novel treatment of spectral clustering and biclustering of networks, this book bridges the gap between graph theory and statistics by giving answers to the demanding questions that arise when statisticians are confronted with large weighted graphs or rectangular arrays. The author presents a wide range of classical and modern statistical methods adapted to weighted graphs and contingency tables. In addition, practical examples from social and biological networks are included, and a teacher's guide is provided on a supporting website"--  |c Provided by publisher. 
520 |a "Provides a timely, novel and unified treatment of many important problems surrounding the spectral and classification properties of networks"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
505 8 |a Machine generated contents note: Dedication Preface Acknowledgements List of Abbreviations Introduction 1 Multivariate analysis techniques for representing graphs and contingency tables 1.1 Quadratic placement problems for weighted graphs and hypergraphs 1.1.1 Representation of edge-weighted graphs 1.1.2 Representation of hypergraphs 1.1.3 Examples for spectra and representation of simple graphs 1.2 SVD of contingency tables and correspondence matrices 1.3 Normalized Laplacian and modularity spectra 1.4 Representation of joint distributions 1.4.1 General setup 1.4.2 Integral operators between L2 spaces 1.4.3 When the kernel is the joint distribution itself 1.4.4 Maximal correlation and optimal representations 1.5 Treating nonlinearities via reproducing kernel Hilbert spaces 1.5.1 Notion of the reproducing kernel 1.5.2 RKHS corresponding to a kernel 1.5.3 Two examples of an RKHS 1.5.4 Kernel -- based on a sample -- and the empirical feature map References 2 Multiway cut problems 2.1 Estimating multiway cuts via spectral relaxation 2.1.1 Maximum, minimum, and ratio cuts of edge-weighted graphs 2.1.2 Multiway cuts of hypergraphs 2.2 Normalized cuts 2.3 The isoperimetric number and sparse cuts 2.4 The Newman-Girvan modularity 2.4.1 Maximizing the balanced Newman-Girvan modularity 2.4.2 Maximizing the normalized Newman-Girvan modularity 2.4.3 Anti-community structure and some examples 2.5 Normalized bicuts of contingency tables References 3 Large networks, perturbation of block structures 3.1 Symmetric block structures burdened with random noise 3.1.1 General blown-up structures 3.1.2 Blown-up multipartite structures 3.1.3 Weak links between disjoint components 3.1.4 Recognizing the structure 3.1.5 Random power law graphs and the extended planted partition model 3.2 Noisy contingency tables 3.2.1 Singular values of a noisy contingency table 3.2.2 Clustering the rows and columns via singular vector pairs 3.2.3 Perturbation results for correspondence matrices 3.2.4 Finding the blown-up skeleton 3.3 Regular cluster pairs 3.3.1 Normalized modularity and volume regularity of edgeweighted graphs 3.3.2 Correspondence matrices and volume regularity of contingency tables 3.3.3 Directed graphs References 4 Testable graph and contingency table parameters 4.1 Convergent graph sequences 4.2 Testability of weighted graph parameters 4.3 Testability of minimum balanced multiway cuts 4.4 Balanced cuts and fuzzy clustering 4.5 Noisy graph sequences 4.6 Convergence of the spectra and spectral subspaces 4.7 Convergence of contingency tables References 5 Statistical learning of networks 5.1 Parameter estimation in random graph models 5.1.1 EMalgorithmfor estimating the parameters of the block model 5.1.2 Parameter estimation in the _ and _ models 5.2 Nonparametric methods for clustering networks 5.2.1 Spectral clustering of graphs and biclustering of contingency tables 5.2.2 Clustering of hypergraphs 5.3 Supervised learning References A Linear algebra and some functional analysis A.1 Metric, normed vector, and Euclidean spaces A.2 Hilbert spaces A.3 Matrices References B Random vectors and matrices B.1 Random vectors B.2 Random matrices References C Multivariate statistical methods C.1 Principal Component Analysis C.2 Canonical Correlation Analysis C.3 Correspondence Analysis C.4 Multivariate Regression and Analysis of Variance C.5 The k-means clustering C.6 Multidimensional Scaling C.7 Discriminant Analysis References Index. 
588 0 |a Print version record and CIP data provided by publisher. 
650 0 |a Multivariate analysis. 
650 0 |a Contingency tables. 
650 0 |a Graph theory. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Contingency tables.  |2 fast  |0 (OCoLC)fst00876694 
650 7 |a Graph theory.  |2 fast  |0 (OCoLC)fst00946584 
650 7 |a Multivariate analysis.  |2 fast  |0 (OCoLC)fst01029105 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
776 0 8 |i Print version:  |a Bolla, Marianna.  |t Spectral clustering and biclustering.  |d Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2013  |z 9781118344927  |w (DLC) 2013011891 
856 4 0 |u https://doi.org/10.1002/9781118650684  |z Full Text via HEAL-Link 
994 |a 92  |b DG1