Uncertainty and optimization in structural mechanics /
Optimization is generally a reduction operation of a definite quantity. This process naturally takes place in our environment and through our activities. For example, many natural systems evolve, in order to minimize their potential energy. Modeling these phenomena then largely relies on our capacit...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Wiley,
2013.
|
Σειρά: | Colección "FOCUS."
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Title Page; Contents; Preface; CHAPTER 1. UNCERTAINTY; 1.1. Introduction; 1.2. The optimization problem; 1.3. Sources of uncertainty; 1.4. Dealing with uncertainty; 1.4.1. Reliability optimization; 1.4.2. Robust optimization; 1.4.3. Multi-object optimization; 1.4.4. Stochastic optimization; 1.4.5. Worst-case scenario based optimization; 1.4.6. Non-probabilistic optimization; 1.4.7. Interval modeling; 1.4.8. Fuzzy sets; 1.5. Analyzing sensitivity; 1.5.1. Local sensitivity analysis; 1.5.2. Global sensitivity analysis; CHAPTER 2. RELIABILITY IN MECHANICAL SYSTEMS; 2.1. Introduction.
- 2.2. A structure reliability problem2.3. Modeling a structure reliability problem; 2.3.1. A deterministic mechanical model; 2.3.2. Risks and probabilistic modeling; 2.3.3. Types of failure in a structure; 2.3.4. Probability of failure in a structure; 2.4. Calculating the probability of failure in a structure; 2.4.1. Calculating the probability of failure using the Monte Carlo method; 2.4.2. Calculating the probability of failure using a reliability index; 2.5. Reliability indices; 2.5.1. The Rjanitzyne-Cornell index; 2.5.2. The Hasofer-Lind index; 2.5.3. The FORM method.
- 2.5.4. The SORM method2.6. Overview of the resistance-sollicitation problem; 2.6.1. Probability of failure; 2.6.2. Reliability indices; 2.7. System reliability in mechanics; 2.7.1. Combinations of types of failure; 2.7.2. Assessment of the failure probability of a system; 2.8. The finite element method and structural reliability; 2.8.1. Context and objectives of the problem; 2.8.2. Discretization and modeling random fields; 2.8.3. Mechano-reliability coupling; 2.8.4. Surface response coupling; CHAPTER 3. OPTIMAL STRUCTURAL DESIGN; 3.1. Introduction.
- 3.2. Historical development of structural optimization3.3. Classifying structural optimization problems; 3.3.1. Dimensional optimization; 3.3.2. Topological optimization; 3.3.3. Shape optimization; CHAPTER 4. MULTI-OBJECT OPTIMIZATION WITH UNCERTAINTY; 4.1. Introduction; 4.1.1. Choice of an optimization method; 4.1.2. Classifying optimization methods; 4.2. User classification; 4.3. Design classification; 4.4. Multi-objective genetic algorithms; 4.5. Robust multi-objective optimization; 4.5.1. Robustness criteria in multi-objective optimization; 4.6. Normal boundary intersection method.
- 4.6.1. Description of the NBI method4.7. Multi-objective structural optimization problem; CHAPTER 5. ROBUST OPTIMIZATION; 5.1. Introduction; 5.2. Modeling uncertainty; 5.2.1. Parametric methods; 5.2.2. Non-parametric methods; 5.3. Accounting for robustness in optimum research; 5.4. Robustness criteria; 5.4.1. Defining uncertainty in design parameters; 5.4.2. Robustness criteria in multi-objective optimization; 5.5. Resolution method; 5.6. Examples of mono-objective optimization; CHAPTER 6. RELIABILITY OPTIMIZATION; 6.1. Introduction; 6.2. Overview of reliability optimization.