Sustainable development in chemical engineering : innovative technologies /
Άλλοι συγγραφείς: | , , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Chichester, West Sussex, United Kingdom :
John Wiley & Sons Inc.,
[2013]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1.Sustainable Development Strategies: An Overview / Angelo Basile
- 1.1.Renewable Energies: State of the Art and Diffusion
- 1.2.Process Intensification
- 1.2.1.Process Intensifying Equipment
- 1.2.2.Process Intensifying Methods
- 1.3.Concept and Potentialities of Bio-based Platforms for Biomolecule Production
- 1.3.1.Biogas Platform
- 1.3.2.Sugar Platform
- 1.3.3.Vegetable Oil Platform
- 1.3.4.Algae Oil Platform
- 1.3.5.Lignin Platform
- 1.3.6.Opportunities and Growth Predictions
- 1.4.Soil and Water Remediation
- 1.4.1.Soil Remediation
- 1.4.2.Water Remediation
- Acknowledgement
- References
- 2.Innovative Solar Technology: CSP Plants for Combined Production of Hydrogen and Electricity / Marcello De Falco
- 2.1.Principles
- 2.2.Plant Configurations
- 2.2.1.Solar Membrane Reactor Steam Reforming
- 2.2.2.Solar Enriched Methane Production
- 2.3.Mathematical Models
- 2.3.1.Solar Enriched Methane Reactor Modelling
- 2.3.2.Membrane Reactor Modelling
- 2.3.3.WGS, Separation Units and the Electricity Production Model
- 2.4.Plant Simulations
- 2.4.1.EM Reactor
- 2.4.2.Membrane Reactor
- 2.4.3.Global Plant Simulations and Comparison
- 2.5.Conclusions
- Nomenclature
- References
- 3.Strategies for Increasing Electrical Energy Production from Intermittent Renewables / Alessandro Franco
- 3.1.Introduction
- 3.2.Penetration of Renewable Energies into the Electricity Market and Issues Related to Their Development: Some Interesting Cases
- 3.3.An Approach to Expansion of RES and Efficiency Policy in an Integrated Energy System
- 3.3.1.Optimization Problems
- 3.3.2.Operational Limits and Constraints
- 3.3.3.Software Tools for Analysis
- 3.4.Analysis of Possible Interesting Scenarios for Increasing Penetration of RES
- 3.4.1.Renewable Energy Expansion in a Reference Scenario
- 3.4.2.Increasing Thermoelectric Generation Flexibility
- 3.4.3.Effects of Introducing the Peak/Off-Peak Charge Tariff
- 3.4.4.Introducing Electric Traction in the Transport Sector: Connection between Electricity and Transport Systems
- 3.4.5.Increasing Industrial CHP Electricity Production
- 3.4.6.Developing the Concept of ̀Virtual Power Plants'
- 3.5.Analysis of a Meaningful Case Study: The Italian Scenario
- 3.5.1.Renewable Energy Expansion in a Reference Scenario
- 3.5.2.Increasing Thermoelectric Generation Flexibility
- 3.5.3.Effects of Introducing a Peak/Off-Peak Charge Tariff
- 3.5.4.Introduction of a Connection between Electricity and Transport Systems: The Increase in Electric Cars
- 3.5.5.Increasing Industrial CHP Electricity Production
- 3.6.Analysis and Discussion
- 3.7.Conclusions
- Nomenclature and Abbreviations
- References
- 4.The Smart Grid as a Response to Spread the Concept of Distributed Generation / Qiuwei Wu
- 4.1.Introduction
- 4.2.Present Electric Power Generation Systems
- 4.3.A Future Electrical Power Generation System with a High Penetration of Distributed Generation and Renewable Energy Resources
- 4.4.Integration of DGs into Smart Grids for Balancing Power
- 4.5.The Bornholm System
- A "Fast Track" for Smart Grids
- 4.6.Conclusions
- References
- 5.Process Intensification in the Chemical Industry: A Review / Stefano Curcio
- 5.1.Introduction
- 5.2.Different Approaches to Process Intensification
- 5.3.Process Intensification as a Valuable Tool for the Chemical Industry
- 5.4.PI Exploitation in the Chemical Industry
- 5.4.1.Structured Packing for Mass Transfer
- 5.4.2.Static Mixers
- 5.4.3.Catalytic Foam Reactors
- 5.4.4.Monolithic Reactors
- 5.4.5.Microchannel Reactors
- 5.4.6.Non-Selective Membrane Reactors
- 5.4.7.Adsorptive Distillation
- 5.4.8.Heat-Integrated Distillation
- 5.4.9.Membrane Absorption/Stripping
- 5.4.10.Membrane Distillation
- 5.4.11.Membrane Crystallization
- 5.4.12.Distillation-Pervaporation
- 5.4.13.Membrane Reactors
- 5.4.14.Heat Exchanger Reactors
- 5.4.15.Simulated Moving Bed Reactors
- 5.4.16.Gas-Solid-Solid Trickle Flow Reactor
- 5.4.17.Reactive Extraction
- 5.4.18.Reactive Absorption
- 5.4.19.Reactive Distillation
- 5.4.20.Membrane-Assisted Reactive Distillation
- 5.4.21.Hydrodynamic Cavitation Reactors
- 5.4.22.Pulsed Compression Reactor
- 5.4.23.Sonochemical Reactors
- 5.4.24.Ultrasound-Enhanced Crystallization
- 5.4.25.Electric Field-Enhanced Extraction
- 5.4.26.Induction and Ohmic Heating
- 5.4.27.Microwave Drying
- 5.4.28.Microwave-Enhanced Separation and Microwave Reactors
- 5.4.29.Photochemical Reactors
- 5.4.30.Oscillatory Baffled Reactor Technologies
- 5.4.31.Reverse Flow Reactor Operation
- 5.4.32.Pulse Combustion Drying
- 5.4.33.Supercritical Separation
- 5.5.Conclusions
- References
- 6.Process Intensification in the Chemical and Petrochemical Industry / Simona Liguori
- 6.1.Introduction
- 6.2.Process Intensification
- 6.2.1.Definition and Principles
- 6.2.2.Components
- 6.3.The Membrane Role
- 6.4.Membrane Reactor
- 6.4.1.Membrane Reactor and Process Intensification
- 6.4.2.Membrane Reactor Benefits
- 6.5.Applications of Membrane Reactors in the Petrochemical Industry
- 6.5.1.Dehydrogenation Reactions
- 6.5.2.Oxidative Coupling of Methane
- 6.5.3.Methane Steam Reforming
- 6.5.4.Water Gas Shift
- 6.6.Process Intensification in Chemical Industry
- 6.6.1.Reactive Distillation
- 6.6.2.Reactive Extraction
- 6.6.3.Reactive Adsorption
- 6.6.4.Hybrid Separation
- 6.7.Future Trends
- 6.8.Conclusion
- Nomenclature
- References
- 7.Production of Bio-Based Fuels: Bioethanol and Biodiesel / Chiranjib Bhattacharjee
- 7.1.Introduction
- 7.1.1.Importance of Biofuel as a Renewable Energy Source
- 7.2.Production of Bioethanol
- 7.2.1.Bioethanol from Biomass: Production, Processes, and Limitations
- 7.2.2.Substrate
- 7.2.3.Future Prospects for Bioethanol
- 7.3.Biodiesel and Renewable Diesels from Biomass
- 7.3.1.Potential of Vegetable Oil as a Diesel Fuel Substitute
- 7.3.2.Vegetable Oil Ester Based Biodiesel
- 7.3.3.Several Approaches to Biodiesel Synthesis
- 7.3.4.Sustainability of Biofuel Use
- 7.3.5.Future Prospects
- 7.4.Perspective
- List of Acronyms
- References
- 8.Inside the Bioplastics World: An Alternative to Petroleum-based Plastics / Vincenzo Piemonte
- 8.1.Bioplastic Concept
- 8.2.Bioplastic Production Processes
- 8.2.1.PLA Production Process
- 8.2.2.Starch-based Bioplastic Production Process
- 8.3.Bioplastic Environmental Impact: Strengths and Weaknesses
- 8.3.1.Life Cycle Assessment Methodology
- 8.3.2.The Ecoindicator 99 Methodology: An End-Point Approach
- 8.3.3.Case Study 1: PLA versus PET Bottles
- 8.3.4.Case Study 2: Mater-Bi versus PE Shoppers
- 8.3.5.Land Use Change (LUC) Emissions and Bioplastics
- 8.4.Conclusions
- Acknowledgements
- References
- 9.Biosurfactants / Letizia Fracchia
- 9.1.Introduction
- 9.2.State of the Art
- 9.2.1.Glycolipids
- 9.2.2.Lipopeptides
- 9.2.3.Fatty Acids, Neutral Lipids, and Phospholipids
- 9.2.4.Polymeric Biosurfactants
- 9.2.5.Particulate Biosurfactants
- 9.3.Production Technologies
- 9.3.1.Use of Renewable Substrates
- 9.3.2.Medium Optimization
- 9.3.3.Immobilization
- 9.4.Recovery of Biosurfactants
- 9.5.Application Fields
- 9.5.1.Environmental Applications
- 9.5.2.Biomedical Applications
- 9.5.3.Agricultural Applications
- 9.5.4.Biotechnological and Nanotechnological Applications
- 9.6.Future Prospects
- References
- 10.Bioremediation of Water: A Sustainable Approach / D.
- Lawrence Arockiasamy
- 10.1.Introduction
- 10.2.State-of-the-Art: Recent Development
- 10.3.Water Management
- 10.4.Overview of Bioremediation in Wastewater Treatment and Ground Water Contamination
- 10.5.Membrane Separation in Bioremediation
- 10.6.Case Studies
- 10.6.1.Bioremediation of Heavy Metals
- 10.6.2.Bioremediation of Nitrate Pollution
- 10.6.3.Bioremediation in the Petroleum Industry
- 10.7.Conclusions
- List of Acronyms
- References
- 11.Effective Remediation of Contaminated Soils by Eco-Compatible Physical, Biological, and Chemical Practices / Alessandro Piccolo
- 11.1.Introduction
- 11.2.Biological Methods (Microorganisms, Plants, Compost, and Biochar)
- 11.2.1.Microorganisms
- 11.2.2.Plants
- 11.2.3.Plant-Microorganism Associations: Mycorrhizal Fungi
- 11.2.4.Compost and Biochar
- 11.3.Physicochemical Methods
- 11.3.1.Humic Substances as Natural Surfactants
- 11.4.Chemical Methods
- 11.4.1.Metal-Porphyrins
- 11.4.2.Nanocatalysts
- 11.5.Conclusions
- List of Symbols and Acronyms
- Acknowledgments
- References
- 12.Nanoparticles as a Smart Technology for Remediation / Fiore Pasquale Nicoletta
- 12.1.Introduction
- 12.2.Silica Nanoparticles for Wastewater Treatment
- 12.2.1.Silica Nanoparticles: An Overview
- 12.2.2.Preparation of Nanosilica
- 12.2.3.Removal of Dyes by Silica Nanoparticles
- 12.2.4.Removal of Metallic Pollutants by Silica Nanoparticles
- 12.3.Magnetic Nanoparticles: Synthesis, Characterization and Applications
- 12.3.1.Magnetic Nanoparticles: An Overview
- 12.3.2.Synthesis of Magnetic Nanoparticles
- 12.3.3.Characterization of Magnetic Nanoparticles
- 12.3.4.Applications of Magnetic Nanoparticles
- 12.4.Titania Nanoparticles in Environmental Photo-Catalysis
- 12.4.1.Advanced Oxidation Processes
- 12.4.2.TiO2 Assisted Photo-Catalysis
- 12.4.3.Developments in TiO2 Assisted Photo-Catalysis
- 12.5.Future Prospects: Is Nano Really Good for the Environment?
- 12.6.Conclusions
- List of Abbreviations
- References.