Sustainable development in chemical engineering : innovative technologies /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Basile, Angelo (Angelo Bruno) (Επιμελητής έκδοσης), Piemonte, Vincenzo (Επιμελητής έκδοσης), Falco, Marcello de (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., [2013]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: 1.Sustainable Development Strategies: An Overview / Angelo Basile
  • 1.1.Renewable Energies: State of the Art and Diffusion
  • 1.2.Process Intensification
  • 1.2.1.Process Intensifying Equipment
  • 1.2.2.Process Intensifying Methods
  • 1.3.Concept and Potentialities of Bio-based Platforms for Biomolecule Production
  • 1.3.1.Biogas Platform
  • 1.3.2.Sugar Platform
  • 1.3.3.Vegetable Oil Platform
  • 1.3.4.Algae Oil Platform
  • 1.3.5.Lignin Platform
  • 1.3.6.Opportunities and Growth Predictions
  • 1.4.Soil and Water Remediation
  • 1.4.1.Soil Remediation
  • 1.4.2.Water Remediation
  • Acknowledgement
  • References
  • 2.Innovative Solar Technology: CSP Plants for Combined Production of Hydrogen and Electricity / Marcello De Falco
  • 2.1.Principles
  • 2.2.Plant Configurations
  • 2.2.1.Solar Membrane Reactor Steam Reforming
  • 2.2.2.Solar Enriched Methane Production
  • 2.3.Mathematical Models
  • 2.3.1.Solar Enriched Methane Reactor Modelling
  • 2.3.2.Membrane Reactor Modelling
  • 2.3.3.WGS, Separation Units and the Electricity Production Model
  • 2.4.Plant Simulations
  • 2.4.1.EM Reactor
  • 2.4.2.Membrane Reactor
  • 2.4.3.Global Plant Simulations and Comparison
  • 2.5.Conclusions
  • Nomenclature
  • References
  • 3.Strategies for Increasing Electrical Energy Production from Intermittent Renewables / Alessandro Franco
  • 3.1.Introduction
  • 3.2.Penetration of Renewable Energies into the Electricity Market and Issues Related to Their Development: Some Interesting Cases
  • 3.3.An Approach to Expansion of RES and Efficiency Policy in an Integrated Energy System
  • 3.3.1.Optimization Problems
  • 3.3.2.Operational Limits and Constraints
  • 3.3.3.Software Tools for Analysis
  • 3.4.Analysis of Possible Interesting Scenarios for Increasing Penetration of RES
  • 3.4.1.Renewable Energy Expansion in a Reference Scenario
  • 3.4.2.Increasing Thermoelectric Generation Flexibility
  • 3.4.3.Effects of Introducing the Peak/Off-Peak Charge Tariff
  • 3.4.4.Introducing Electric Traction in the Transport Sector: Connection between Electricity and Transport Systems
  • 3.4.5.Increasing Industrial CHP Electricity Production
  • 3.4.6.Developing the Concept of ̀Virtual Power Plants'
  • 3.5.Analysis of a Meaningful Case Study: The Italian Scenario
  • 3.5.1.Renewable Energy Expansion in a Reference Scenario
  • 3.5.2.Increasing Thermoelectric Generation Flexibility
  • 3.5.3.Effects of Introducing a Peak/Off-Peak Charge Tariff
  • 3.5.4.Introduction of a Connection between Electricity and Transport Systems: The Increase in Electric Cars
  • 3.5.5.Increasing Industrial CHP Electricity Production
  • 3.6.Analysis and Discussion
  • 3.7.Conclusions
  • Nomenclature and Abbreviations
  • References
  • 4.The Smart Grid as a Response to Spread the Concept of Distributed Generation / Qiuwei Wu
  • 4.1.Introduction
  • 4.2.Present Electric Power Generation Systems
  • 4.3.A Future Electrical Power Generation System with a High Penetration of Distributed Generation and Renewable Energy Resources
  • 4.4.Integration of DGs into Smart Grids for Balancing Power
  • 4.5.The Bornholm System
  • A "Fast Track" for Smart Grids
  • 4.6.Conclusions
  • References
  • 5.Process Intensification in the Chemical Industry: A Review / Stefano Curcio
  • 5.1.Introduction
  • 5.2.Different Approaches to Process Intensification
  • 5.3.Process Intensification as a Valuable Tool for the Chemical Industry
  • 5.4.PI Exploitation in the Chemical Industry
  • 5.4.1.Structured Packing for Mass Transfer
  • 5.4.2.Static Mixers
  • 5.4.3.Catalytic Foam Reactors
  • 5.4.4.Monolithic Reactors
  • 5.4.5.Microchannel Reactors
  • 5.4.6.Non-Selective Membrane Reactors
  • 5.4.7.Adsorptive Distillation
  • 5.4.8.Heat-Integrated Distillation
  • 5.4.9.Membrane Absorption/Stripping
  • 5.4.10.Membrane Distillation
  • 5.4.11.Membrane Crystallization
  • 5.4.12.Distillation-Pervaporation
  • 5.4.13.Membrane Reactors
  • 5.4.14.Heat Exchanger Reactors
  • 5.4.15.Simulated Moving Bed Reactors
  • 5.4.16.Gas-Solid-Solid Trickle Flow Reactor
  • 5.4.17.Reactive Extraction
  • 5.4.18.Reactive Absorption
  • 5.4.19.Reactive Distillation
  • 5.4.20.Membrane-Assisted Reactive Distillation
  • 5.4.21.Hydrodynamic Cavitation Reactors
  • 5.4.22.Pulsed Compression Reactor
  • 5.4.23.Sonochemical Reactors
  • 5.4.24.Ultrasound-Enhanced Crystallization
  • 5.4.25.Electric Field-Enhanced Extraction
  • 5.4.26.Induction and Ohmic Heating
  • 5.4.27.Microwave Drying
  • 5.4.28.Microwave-Enhanced Separation and Microwave Reactors
  • 5.4.29.Photochemical Reactors
  • 5.4.30.Oscillatory Baffled Reactor Technologies
  • 5.4.31.Reverse Flow Reactor Operation
  • 5.4.32.Pulse Combustion Drying
  • 5.4.33.Supercritical Separation
  • 5.5.Conclusions
  • References
  • 6.Process Intensification in the Chemical and Petrochemical Industry / Simona Liguori
  • 6.1.Introduction
  • 6.2.Process Intensification
  • 6.2.1.Definition and Principles
  • 6.2.2.Components
  • 6.3.The Membrane Role
  • 6.4.Membrane Reactor
  • 6.4.1.Membrane Reactor and Process Intensification
  • 6.4.2.Membrane Reactor Benefits
  • 6.5.Applications of Membrane Reactors in the Petrochemical Industry
  • 6.5.1.Dehydrogenation Reactions
  • 6.5.2.Oxidative Coupling of Methane
  • 6.5.3.Methane Steam Reforming
  • 6.5.4.Water Gas Shift
  • 6.6.Process Intensification in Chemical Industry
  • 6.6.1.Reactive Distillation
  • 6.6.2.Reactive Extraction
  • 6.6.3.Reactive Adsorption
  • 6.6.4.Hybrid Separation
  • 6.7.Future Trends
  • 6.8.Conclusion
  • Nomenclature
  • References
  • 7.Production of Bio-Based Fuels: Bioethanol and Biodiesel / Chiranjib Bhattacharjee
  • 7.1.Introduction
  • 7.1.1.Importance of Biofuel as a Renewable Energy Source
  • 7.2.Production of Bioethanol
  • 7.2.1.Bioethanol from Biomass: Production, Processes, and Limitations
  • 7.2.2.Substrate
  • 7.2.3.Future Prospects for Bioethanol
  • 7.3.Biodiesel and Renewable Diesels from Biomass
  • 7.3.1.Potential of Vegetable Oil as a Diesel Fuel Substitute
  • 7.3.2.Vegetable Oil Ester Based Biodiesel
  • 7.3.3.Several Approaches to Biodiesel Synthesis
  • 7.3.4.Sustainability of Biofuel Use
  • 7.3.5.Future Prospects
  • 7.4.Perspective
  • List of Acronyms
  • References
  • 8.Inside the Bioplastics World: An Alternative to Petroleum-based Plastics / Vincenzo Piemonte
  • 8.1.Bioplastic Concept
  • 8.2.Bioplastic Production Processes
  • 8.2.1.PLA Production Process
  • 8.2.2.Starch-based Bioplastic Production Process
  • 8.3.Bioplastic Environmental Impact: Strengths and Weaknesses
  • 8.3.1.Life Cycle Assessment Methodology
  • 8.3.2.The Ecoindicator 99 Methodology: An End-Point Approach
  • 8.3.3.Case Study 1: PLA versus PET Bottles
  • 8.3.4.Case Study 2: Mater-Bi versus PE Shoppers
  • 8.3.5.Land Use Change (LUC) Emissions and Bioplastics
  • 8.4.Conclusions
  • Acknowledgements
  • References
  • 9.Biosurfactants / Letizia Fracchia
  • 9.1.Introduction
  • 9.2.State of the Art
  • 9.2.1.Glycolipids
  • 9.2.2.Lipopeptides
  • 9.2.3.Fatty Acids, Neutral Lipids, and Phospholipids
  • 9.2.4.Polymeric Biosurfactants
  • 9.2.5.Particulate Biosurfactants
  • 9.3.Production Technologies
  • 9.3.1.Use of Renewable Substrates
  • 9.3.2.Medium Optimization
  • 9.3.3.Immobilization
  • 9.4.Recovery of Biosurfactants
  • 9.5.Application Fields
  • 9.5.1.Environmental Applications
  • 9.5.2.Biomedical Applications
  • 9.5.3.Agricultural Applications
  • 9.5.4.Biotechnological and Nanotechnological Applications
  • 9.6.Future Prospects
  • References
  • 10.Bioremediation of Water: A Sustainable Approach / D.
  • Lawrence Arockiasamy
  • 10.1.Introduction
  • 10.2.State-of-the-Art: Recent Development
  • 10.3.Water Management
  • 10.4.Overview of Bioremediation in Wastewater Treatment and Ground Water Contamination
  • 10.5.Membrane Separation in Bioremediation
  • 10.6.Case Studies
  • 10.6.1.Bioremediation of Heavy Metals
  • 10.6.2.Bioremediation of Nitrate Pollution
  • 10.6.3.Bioremediation in the Petroleum Industry
  • 10.7.Conclusions
  • List of Acronyms
  • References
  • 11.Effective Remediation of Contaminated Soils by Eco-Compatible Physical, Biological, and Chemical Practices / Alessandro Piccolo
  • 11.1.Introduction
  • 11.2.Biological Methods (Microorganisms, Plants, Compost, and Biochar)
  • 11.2.1.Microorganisms
  • 11.2.2.Plants
  • 11.2.3.Plant-Microorganism Associations: Mycorrhizal Fungi
  • 11.2.4.Compost and Biochar
  • 11.3.Physicochemical Methods
  • 11.3.1.Humic Substances as Natural Surfactants
  • 11.4.Chemical Methods
  • 11.4.1.Metal-Porphyrins
  • 11.4.2.Nanocatalysts
  • 11.5.Conclusions
  • List of Symbols and Acronyms
  • Acknowledgments
  • References
  • 12.Nanoparticles as a Smart Technology for Remediation / Fiore Pasquale Nicoletta
  • 12.1.Introduction
  • 12.2.Silica Nanoparticles for Wastewater Treatment
  • 12.2.1.Silica Nanoparticles: An Overview
  • 12.2.2.Preparation of Nanosilica
  • 12.2.3.Removal of Dyes by Silica Nanoparticles
  • 12.2.4.Removal of Metallic Pollutants by Silica Nanoparticles
  • 12.3.Magnetic Nanoparticles: Synthesis, Characterization and Applications
  • 12.3.1.Magnetic Nanoparticles: An Overview
  • 12.3.2.Synthesis of Magnetic Nanoparticles
  • 12.3.3.Characterization of Magnetic Nanoparticles
  • 12.3.4.Applications of Magnetic Nanoparticles
  • 12.4.Titania Nanoparticles in Environmental Photo-Catalysis
  • 12.4.1.Advanced Oxidation Processes
  • 12.4.2.TiO2 Assisted Photo-Catalysis
  • 12.4.3.Developments in TiO2 Assisted Photo-Catalysis
  • 12.5.Future Prospects: Is Nano Really Good for the Environment?
  • 12.6.Conclusions
  • List of Abbreviations
  • References.