Introduction to wood and natural fiber composites /

"Bringing together widely scattered information on the fundamental concepts and technological applications for the manufacture of wood and natural fiber composites, this reference provides a much needed overview of this rapidly evolving field in a way that is accessible for advanced undergradua...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stokke, Douglas D.
Άλλοι συγγραφείς: Wu, Qinglin, Han, Guangping
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : Wiley, 2014.
Σειρά:Wiley series in renewable resources.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction to Wood and Natural Fiber Composites; Contents; Series Preface; Preface; Acknowledgments; 1 Wood and Natural Fiber Composites: An Overview; 1.1 Introduction; 1.2 What Is Wood?; 1.3 Natural Fibers; 1.3.1 Fibers; 1.3.2 Lignocellulosic Materials; 1.3.3 Worldwide Lignocellulosic Fiber Resources; 1.3.4 Wood as a Teaching Example; 1.4 Composite Concept; 1.4.1 Composites Are Important Materials; 1.4.2 What Is a Composite?; 1.4.3 Taxonomy of Matrix Composites; 1.4.4 Laminar Composites; 1.4.5 Taxonomy of Wood and Natural Fiber Composites; 1.4.6 Composite Scale; 1.5 Cellular Solids.
  • 1.5.1 Natural and Synthetic Cellular Solids1.5.2 Relative Density; 1.6 Objectives and Organization of This Book; References; 2 Lignocellulosic Materials; 2.1 Introduction; 2.2 Chemical Composition of Lignocellulosic Materials; 2.2.1 Polymers: Structure and Properties; 2.2.2 Lignocellulose; 2.2.3 Cellulose; 2.2.4 Hemicelluloses; 2.2.5 Pectins; 2.2.6 Lignin; 2.2.7 Extractives and Extraneous Materials; 2.3 The Woody Cell Wall as a Multicomponent Polymer System; 2.3.1 Skeletal Framework Polymers; 2.3.2 Reinforced Matrix Theory; 2.3.3 Cell Wall Ultrastructure.
  • 2.3.4 Cell Wall Structure Dictates Physical Properties2.3.5 Cell Wall Structure from Molecular to Anatomic Level; 2.4 Anatomical Structure of Representative Plants; 2.4.1 Plant Cell Walls Are Not Solitary Entities; 2.4.2 Structure of Grain Crop Stems; 2.4.3 Structure of Herbaceous Biomass Crop Stems; 2.4.4 Structure of Bast Fiber Stems; 2.4.5 Structure of Woody Monocotyledons; 2.4.6 Wood; 2.5 Comparison of Representative Plant Stems; 2.6 Cellular Solids Revisited; References; 3 Wood as a Lignocellulose Exemplar; 3.1 Introduction.
  • 3.2 Wood as a Representative Lignocellulosic Material: Important Physical Attributes3.3 Moisture Interactions; 3.3.1 Moisture Content; 3.3.2 Hygroscopicity; 3.3.3 States of Water in Wood; 3.3.4 Capillary or Free Water; 3.3.5 Shrinking and Swelling due to Moisture Flux; 3.4 Density and Specific Gravity of Wood; 3.4.1 Density of Wood; 3.4.2 Specific Gravity of Wood; 3.5 Wood: A Cellular Solid; 3.5.1 Relative Density of Wood; 3.6 Mechanical Properties; 3.6.1 Compression Strength; 3.6.2 Compression Strength of Wood versus Relative Density; 3.6.3 Mechanical Properties in Context.
  • 3.7 Wood Is the Exemplar: Extending Principles to Other Plant MaterialsReferences; 4 Consolidation Behavior of Lignocellulosic Materials; 4.1 Introduction; 4.2 Synthetic Crystalline and Amorphous Polymers; 4.2.1 Polyethylene; 4.2.2 Polystyrene: Isotactic, Syndiotactic, and Atactic; 4.2.3 Degree of Crystallinity, Revisited; 4.2.4 Thermal Softening of Amorphous Polymers: Glass Transition Temperature, Tg; 4.3 Glass Transition Temperature of Wood Polymers; 4.3.1 Glass Transition Temperature of Wood Polymers: Empirical Data; 4.3.2 Kwei Equation: Modeling Tg of Wood Polymers.