Proportionate-type normalized least mean square algorithms /

The topic of this book is proportionate-type normalized least mean squares (PtNLMS) adaptive filtering algorithms, which attempt to estimate an unknown impulse response by adaptively giving gains proportionate to an estimate of the impulse response and the current measured error. These algorithms of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wagner, Kevin
Άλλοι συγγραφείς: Doroslovački, Miloš
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London, U.K. : ISTE ; 2013.
Hoboken, N.J. : Wiley, 2013.
Σειρά:Focus series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06545nam a2200877 4500
001 ocn853501537
003 OCoLC
005 20170124070434.3
006 m o d
007 cr cnu---unuuu
008 130723s2013 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CUS  |d DG1  |d OCLCA  |d E7B  |d YDXCP  |d UMC  |d OCLCF  |d CDX  |d EBLCP  |d IDEBK  |d DEBSZ  |d DEBBG  |d OCLCQ  |d COO  |d OCLCQ  |d LOA  |d GrThAP 
019 |a 852758625  |a 862113117  |a 961649774  |a 962642891 
020 |a 9781118579251  |q (electronic bk.) 
020 |a 1118579259  |q (electronic bk.) 
020 |a 9781118579664  |q (electronic bk.) 
020 |a 1118579666  |q (electronic bk.) 
020 |a 9781118579558  |q (electronic bk.) 
020 |a 1118579550  |q (electronic bk.) 
020 |a 9781299732360  |q (MyiLibrary) 
020 |a 1299732364  |q (MyiLibrary) 
020 |z 9781848214705 
020 |z 1848214707 
029 1 |a AU@  |b 000051817011 
029 1 |a AU@  |b 000053043061 
029 1 |a CHBIS  |b 010441783 
029 1 |a CHNEW  |b 000635563 
029 1 |a CHVBK  |b 334089948 
029 1 |a DEBBG  |b BV041292238 
029 1 |a DEBBG  |b BV041909017 
029 1 |a DEBBG  |b BV043396099 
029 1 |a DEBSZ  |b 397581572 
029 1 |a DEBSZ  |b 449369552 
029 1 |a DKDLA  |b 820120-katalog:000664687 
029 1 |a NZ1  |b 15341689 
035 |a (OCoLC)853501537  |z (OCoLC)852758625  |z (OCoLC)862113117  |z (OCoLC)961649774  |z (OCoLC)962642891 
037 |a 504487  |b MIL 
050 4 |a QA214  |b .W384 2013 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.8 
049 |a MAIN 
100 1 |a Wagner, Kevin. 
245 1 0 |a Proportionate-type normalized least mean square algorithms /  |c Kevin Wagner, Miloš Doroslovački. 
264 1 |a London, U.K. :  |b ISTE ;  |c 2013. 
264 1 |a Hoboken, N.J. :  |b Wiley,  |c 2013. 
300 |a 1 online resource (xiv, 177 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Focus series 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (Wiley, viewed July 23, 2013). 
505 0 |a Title Page; Contents; Preface; Notation; Acronyms; Chapter 1. Introduction to PtNLMS Algorithms; 1.1. Applications motivating PtNLMS algorithms; 1.2. Historical review of existing PtNLMS algorithms; 1.3. Unified framework for representing PtNLMS algorithms; 1.4. Proportionate-type NLMS adaptive filtering algorithms; 1.4.1. Proportionate-type least mean square algorithm; 1.4.2. PNLMS algorithm; 1.4.3. PNLMS++ algorithm; 1.4.4. IPNLMS algorithm; 1.4.5. IIPNLMS algorithm; 1.4.6. IAF-PNLMS algorithm; 1.4.7. MPNLMS algorithm; 1.4.8. EPNLMS algorithm; 1.5. Summary. 
505 8 |a Chapter 2. LMS Analysis Techniques2.1. LMS analysis based on small adaptation step-size; 2.1.1. Statistical LMS theory: small step-size assumptions; 2.1.2. LMS analysis using stochastic difference equations with constant coefficients; 2.2. LMS analysis based on independent input signal assumptions; 2.2.1. Statistical LMS theory: independent input signal assumptions; 2.2.2. LMS analysis using stochastic difference equations with stochastic coefficients; 2.3. Performance of statistical LMS theory; 2.4. Summary; 3. PtNLMS Analysis Techniques. 
505 8 |a 3.1. Transient analysis of PtNLMS algorithm for white input3.1.1. Link between MSWD and MSE; 3.1.2. Recursive calculation of the MWD and MSWD for PtNLMS algorithms; 3.2. Steady-state analysis of PtNLMS algorithm: bias and MSWD calculation; 3.3. Convergence analysis of the simplified PNLMS algorithm; 3.3.1. Transient theory and results; 3.3.2. Steady-state theory and results; 3.4. Convergence analysis of the PNLMS algorithm; 3.4.1. Transient theory and results; 3.4.2. Steady-state theory and results; 3.5. Summary; 4. Algorithms Designed Based on Minimization of User-Defined Criteria. 
505 8 |a 4.1. PtNLMS algorithms with gain allocation motivated by MSE minimization for white input4.1.1. Optimal gain calculation resulting from MMSE; 4.1.2. Water-filling algorithm simplifications; 4.1.3. Implementation of algorithms; 4.1.4. Simulation results; 4.2. PtNLMS algorithm obtained by minimization of MSE modeled by exponential functions; 4.2.1. WD for proportionate-type steepest descent algorithm; 4.2.2. Water-filling gain allocation for minimization of the MSE modeled by exponential functions; 4.2.3. Simulation results. 
505 8 |a 4.3. PtNLMS algorithm obtained by minimization of the MSWD for colored input4.3.1. Optimal gain algorithm; 4.3.2. Relationship between minimization of MSE and MSWD; 4.3.3. Simulation results; 4.4. Reduced computational complexity suboptimal gain allocation for PtNLMS algorithm with colored input; 4.4.1. Suboptimal gain allocation algorithms; 4.4.2. Simulation results; 4.5. Summary; Chapter 5. Probability Density of WD for PtLMS Algorithms; 5.1. Proportionate-type least mean square algorithms; 5.1.1. Weight deviation recursion. 
520 |a The topic of this book is proportionate-type normalized least mean squares (PtNLMS) adaptive filtering algorithms, which attempt to estimate an unknown impulse response by adaptively giving gains proportionate to an estimate of the impulse response and the current measured error. These algorithms offer low computational complexity and fast convergence times for sparse impulse responses in network and acoustic echo cancellation applications. New PtNLMS algorithms are developed by choosing gains that optimize user-defined criteria, such as mean square error, at all times. PtNLMS algorithms ar. 
504 |a Includes bibliographical references and index. 
650 0 |a Algorithms. 
650 0 |a Computer algorithms. 
650 0 |a Equations, Simultaneous  |x Numerical solutions. 
650 4 |a Algorithms. 
650 4 |a Computer algorithms. 
650 4 |a Equations, Simultaneous  |x Numerical solutions. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Equations, Simultaneous  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00914517 
655 4 |a Electronic books. 
655 7 |a Electronic books.  |2 local 
700 1 |a Doroslovački, Miloš. 
776 0 8 |i Print version:  |a Wagner, Kevin.  |t Proportionate-type normalized least mean square algorithms.  |d London, U.K. : ISTE ; Hoboken, N.J. : Wiley, 2013  |z 9781848214705  |w (OCoLC)853247222 
830 0 |a Focus series. 
856 4 0 |u https://doi.org/10.1002/9781118579558  |z Full Text via HEAL-Link 
994 |a 92  |b DG1