Understanding LTE with MATLAB : from mathematical foundation to simulation, performance evaluation and implementation /
"An introduction to the technical details related to physical layer modeling of the LTE standard with MATLAB"--
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Chichester, West Sussex, United Kingdom :
John Wiley & * Sons, Inc.,
[2014]
|
Σειρά: | Wiley Desktop Editions.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 2.9. Resource Grid Content
- 2.10. Physical Channels
- 2.10.1. Downlink Physical Channels
- 2.10.2. Function of Downlink Channels
- 2.10.3. Uplink Physical Channels
- 2.10.4. Function of Uplink Channels
- 2.11. Physical Signals
- 2.11.1. Reference Signals
- 2.11.2. Synchronization Signals
- 2.12. Downlink Frame Structures
- 2.13. Uplink Frame Structures
- 2.14. MIMO
- 2.14.1. Receive Diversity
- 2.14.2. Transmit Diversity
- 2.14.3. Spatial Multiplexing
- 2.14.4. Beam Forming
- 2.14.5. Cyclic Delay Diversity
- 2.15. MIMO Modes
- 2.16. PHY Processing
- 2.17. Downlink Processing
- 2.18. Uplink Processing
- 2.18.1. SC-FDM
- 2.18.2. MU-MIMO
- 2.19. Chapter Summary
- References
- 3.1. System Development Workflow
- 3.2. Challenges and Capabilities
- 3.3. Focus
- 3.4. Approach
- 3.5. PHY Models in MATLAB
- 3.6. MATLAB
- 3.7. MATLAB Toolboxes
- 3.8. Simulink
- 3.9. Modeling and Simulation
- 3.9.1. DSP System Toolbox
- 3.9.2.Communications System Toolbox.
- 3.9.3. Parallel Computing Toolbox
- 3.9.4. Fixed-Point Designer
- 3.10. Prototyping and Implementation
- 3.10.1. MATLAB Coder
- 3.10.2. Hardware Implementation
- 3.11. Introduction to System Objects
- 3.11.1. System Objects of the Communications System Toolbox
- 3.11.2. Test Benches with System Objects
- 3.11.3. Functions with System Objects
- 3.11.4. Bit Error Rate Simulation
- 3.12. MATLAB Channel Coding Examples
- 3.12.1. Error Correction and Detection
- 3.12.2. Convolutional Coding
- 3.12.3. Hard-Decision Viterbi Decoding
- 3.12.4. Soft-Decision Viterbi Decoding
- 3.12.5. Turbo Coding
- 3.13. Chapter Summary
- References
- 4.1. Modulation Schemes of LTE
- 4.1.1. MATLAB Examples
- 4.1.2. BER Measurements
- 4.2. Bit-Level Scrambling
- 4.2.1. MATLAB\Examples
- 4.2.2. BER Measurements
- 4.3. Channel Coding
- 4.4. Turbo Coding
- 4.4.1. Turbo Encoders
- 4.4.2. Turbo Decoders
- 4.4.3. MATLAB Examples
- 4.4.4. BER Measurements.
- 4.5. Early-Termination Mechanism
- 4.5.1. MATLAB Examples
- 4.5.2. BER Measurements
- 4.5.3. Timing Measurements
- 4.6. Rate Matching
- 4.6.1. MATLAB Examples
- 4.6.2. BER Measurements
- 4.7. Codeblock Segmentation
- 4.7.1. MATLAB Examples
- 4.8. LTE Transport-Channel Processing
- 4.8.1. MATLAB Examples
- 4.8.2. BER Measurements
- 4.9. Chapter Summary
- References
- 5.1. Channel Modeling
- 5.1.1. Large-Scale and Small-Scale Fading
- 5.1.2. Multipath Fading Effects
- 5.1.3. Doppler Ejects
- 5.1.4. MATLAB® Examples
- 5.2. Scope
- 5.3. Workflow
- 5.4. OFDM and Multipath Fading
- 5.5. OFDM and Channel-Response Estimation
- 5.6. Frequency-Domain Equalization
- 5.7. LTE Resource Grid
- 5.8. Configuring the Resource Grid
- 5.8.1. CSR Symbols
- 5.8.2. DCI Symbols
- 5.8.3. BCH Symbols
- 5.8.4. Synchronization Symbols
- 5.8.5. User-Data Symbols
- 5.9. Generating Reference Signals
- 5.10. Resource Element Mapping
- 5.11. OFDM Signal Generation.
- 5.12. Channel Modeling
- 5.13. OFDM Receiver
- 5.14. Resource Element Demapping
- 5.15. Channel Estimation
- 5.16. Equalizer Gain Computation
- 5.17. Visualizing the Channel
- 5.18. Downlink Transmission Mode 1
- 5.18.1. The SISO Case
- 5.18.2. The SIMO Case
- 5.19. Chapter Summary
- References
- 6.1. Definition of MIMO
- 6.2. Motivation for MIMO
- 6.3. Types of MIMO
- 6.3.1. Receiver-Combining Methods
- 6.3.2. Transmit Diversity
- 6.3.3. Spatial Multiplexing
- 6.4. Scope of MIMO Coverage
- 6.5. MIMO Channels
- 6.5.1. MATLAB® Implementation
- 6.5.2. LTE-Specific Channel Models
- 6.5.3. MATLAB Implementation
- 6.5.4. Initializing MIMO Channels
- 6.5.5. Adding AWGN
- 6.6.Common MIMO Features
- 6.6.1. MIMO Resource Grid Structure
- 6.6.2. Resource-Element Mapping
- 6.6.3. Resource-Element Demapping
- 6.6.4. CSR-Based Channel Estimation
- 6.6.5. Channel-Estimation Function
- 6.6.6. Channel-Estimate Expansion
- 6.6.7. Ideal Channel Estimation.
- 6.6.8. Channel-Response Extraction
- 6.7. Specific MIMO Features
- 6.7.1. Transmit Diversity
- 6.7.2. Transceiver Setup Functions
- 6.7.3. Downlink Transmission Mode 2
- 6.7.4. Spatial Multiplexing
- 6.7.5. MIMO Operations in Spatial Multiplexing
- 6.7.6. Downlink Transmission Mode 4
- 6.7.7. Open-Loop Spatial Multiplexing
- 6.7.8. Downlink Transmission Mode 3
- 6.8. Chapter Summary
- References
- 7.1. System Model
- 7.2. Link Adaptation in LTE
- 7.2.1. Channel Quality Estimation
- 7.2.2. Precoder Matrix Estimation
- 7.2.3. Bank Estimation
- 7.3. MATLAB® Examples
- 7.3.1. CQI Estimation
- 7.3.2. PMI Estimation
- 7.3.3. RI Estimation
- 7.4. Link Adaptations between Subframes
- 7.4.1. Structure of the Transceiver Model
- 7.4.2. Updating Transceiver Parameter Structures
- 7.5. Adaptive Modulation
- 7.5.1. No Adaptation
- 7.5.2. Changing the Modulation Scheme at Random
- 7.5.3. CQI-Based Adaptation
- 7.5.4. Verifying Transceiver Performance.
- 7.5.5. Adaptation Results
- 7.6. Adaptive Modulation and Coding Rate
- 7.6.1. No Adaptation
- 7.6.2. Changing Modulation Scheme at Random
- 7.6.3. CQI-Based Adaptation
- 7.6.4. Verifying Transceiver Performance
- 7.6.5. Adaptation Results
- 7.7. Adaptive Precoding
- 7.7.1. PMI-Based Adaptation
- 7.7.2. Verifying Transceiver Performance
- 7.7.3. Adaptation Results
- 7.8. Adaptive MIMO
- 7.8.1. RI-Based Adaptation
- 7.8.2. Verifying Transceiver Performance
- 7.8.3. Adaptation Results
- 7.9. Downlink Control Information
- 7.9.1. MCS
- 7.9.2. Rate of Adaptation
- 7.9.3. DCI Processing
- 7.10. Chapter Summary
- References
- 8.1. System Model
- 8.1.1. Transmitter Model
- 8.1.2. MATLAB Model for a Transmitter Model
- 8.1.3. Channel Model
- 8.1.4. MATLAB Model for a Channel Model
- 8.1.5. Receiver Model
- 8.1.6. MATLAB Model for a Receiver Model
- 8.2. System Model in MATLAB
- 8.3. Quantitative Assessments
- 8.3.1. Effects of Transmission Modes.
- 8.3.2. BER as a Function of SNR
- 8.3.3. Effects of Channel-Estimation Techniques
- 8.3.4. Effects of Channel Models
- 8.3.5. Effects of Channel Delay Spread and Cyclic Prefix
- 8.3.6. Effects of MIMO Receiver Algorithms
- 8.4. Throughput Analysis
- 8.5. System Model in Simulink
- 8.5.1. Building a Simulink Model
- 8.5.2. Integrating MATLAB Algorithms in Simulink
- 8.5.3. Parameter Initialization
- 8.5.4. Running the Simulation
- 8.5.5. Introducing a Parameter Dialog
- 8.6. Qualitative Assessment
- 8.6.1. Voice-Signal Transmission
- 8.6.2. Subjective Voice-Quality Testing
- 8.7. Chapter Summary
- References
- 9.1. Speeding Up Simulations in MATLAB
- 9.2. Workflow
- 9.3. Case Study: LTE PDCCH Processing
- 9.4. Baseline Algorithm
- 9.5. MATLAB Code Profiling
- 9.6. MATLAB Code Optimizations
- 9.6.1. Vectorization
- 9.6.2. Preallocation
- 9.6.3. System Objects
- 9.7. Using Acceleration Features
- 9.7.1. MATLAB-to-C Code Generation.
- 9.7.2. Parallel Computing
- 9.8. Using a Simulink Model
- 9.8.1. Creating the Simulink Model
- 9.8.2. Verifying Numerical Equivalence
- 9.8.3. Simulink Baseline Model
- 9.8.4. Optimizing the Simulink Model
- 9.9. GPU Processing
- 9.9.1. Setting up GPU Functionality in MATLAB
- 9.9.2. GPU-Optimized System Objects
- 9.9.3. Using a Single GPU System Object
- 9.9.4.Combining Parallel Processing with GPUs
- 9.10. Case Study: Turbo Coders on GPU
- 9.10.1. Baseline Algorithm on a CPU
- 9.10.2. Turbo Decoder on a GPU
- 9.10.3. Multiple System Objects on GPU
- 9.10.4. Multiple Frames and Large Data Sizes
- 9.10.5. Using Single-Precision Data Type
- 9.11. Chapter Summary
- 10.1. Use Cases
- 10.2. Motivations
- 10.3. Requirements
- 10.4. MATLAB Code Considerations
- 10.5. How to Generate Code
- 10.5.1. Case Study: Frequency-Domain Equalization
- 10.5.2. Using a MATLAB Command
- 10.5.3. Using the MATLAB Coder Project
- 10.6. Structure of the Generated C Code.
- 10.7. Supported MATLAB Subset
- 10.7.1. Readiness for Code Generation
- 10.7.2. Case Study: Interpolation of Pilot Signals
- 10.8.Complex Numbers and Native C Types
- 10.9. Support for System Toolboxes
- 10.9.1. Case Study: FFT and Inverse FFT
- 10.10. Support for Fixed-Point Data
- 10.10.1. Case Study: FFT Function
- 10.11. Support for Variable-Sized Data
- 10.11.1. Case Study: Adaptive Modulation
- 10.11.2. Fixed-sized Code Generation
- 10.11.3. Bounded Variable-Sized Data
- 10.11.4. Unbounded Variable-Sized Data
- 10.12. Integration with Existing C/C++ Code
- 10.12.1. Algorithm
- 10.12.2. Executing MATLAB Testbench
- 10.12.3. Generating C Code
- 10.12.4. Entry-Point Functions in C
- 10.12.5.C Main Function
- 10.12.6.Compiling and Linking
- 10.12.7. Executing C Testbench
- 10.13. Chapter Summary
- References
- 11.1. Modeling
- 11.1.1. Theoretical Considerations
- 11.1.2. Standard Specifications
- 11.1.3. Algorithms in MATLAB®
- 11.2. Simulation.
- 11.2.1. Simulation Acceleration
- 11.2.2. Acceleration Methods
- 11.2.3. Implementation
- 11.3. Directions for Future Work
- 11.3.1. User-Plane Details
- 11.3.2. Control-Plane Processing
- 11.3.3. Hybrid Automatic Repeat Request
- 11.3.4. System-Access Modules
- 11.4. Concluding Remarks.