Asymptotic methods in the theory of plates with mixed boundary conditions /

This book covers the theoretical background of asymptotic approaches and their use in solving mechanical engineering-oriented problems of structural members, primarily plates (statics and dynamics) with mixed boundary conditions. Key features: Includes analytical solving of mixed boundary value prob...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Andrianov, I. V. (Igorʹ Vasilʹevich), 1948-
Άλλοι συγγραφείς: Awrejcewicz, J. (Jan), Danishevskiĭ, V. V. (Vladislav Valentinovich), Ivankov, Andrey
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : John Wiley & Sons, Ltd., 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06596nam a2200721 4500
001 ocn857234462
003 OCoLC
005 20170124072331.6
006 m o d
007 cr |||||||||||
008 130827s2014 enk ob 001 0 eng
010 |a  2013035003 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d YDXCP  |d CUS  |d DG1  |d OCLCF  |d B24X7  |d OTZ  |d COO  |d OCLCO  |d E7B  |d EBLCP  |d RECBK  |d DEBSZ  |d OCLCQ  |d GrThAP 
019 |a 870589263  |a 961656170  |a 962638448 
020 |a 9781118725139  |q (Adobe PDF) 
020 |a 1118725131  |q (Adobe PDF) 
020 |a 9781118725146  |q (ePub) 
020 |a 111872514X  |q (ePub) 
020 |a 9781118725184  |q (electronic bk.) 
020 |a 1118725182  |q (electronic bk.) 
020 |a 1118725190 
020 |a 9781118725191 
020 |z 9781118725191  |q (cloth) 
029 1 |a DEBSZ  |b 431625530 
029 1 |a NZ1  |b 15495759 
029 1 |a DEBBG  |b BV043396184 
035 |a (OCoLC)857234462  |z (OCoLC)870589263  |z (OCoLC)961656170  |z (OCoLC)962638448 
042 |a pcc 
050 0 0 |a TA660.P6 
072 7 |a TEC  |x 009020  |2 bisacsh 
082 0 0 |a 624.1/7765015114  |2 23 
049 |a MAIN 
100 1 |a Andrianov, I. V.  |q (Igorʹ Vasilʹevich),  |d 1948- 
245 1 0 |a Asymptotic methods in the theory of plates with mixed boundary conditions /  |c Igor Andrianov, Jan Awrejcewicz, Vladislav V. Danishevskyy, Andrey O. Ivankov. 
264 1 |a Chichester, West Sussex, United Kingdom :  |b John Wiley & Sons, Ltd.,  |c 2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a This book covers the theoretical background of asymptotic approaches and their use in solving mechanical engineering-oriented problems of structural members, primarily plates (statics and dynamics) with mixed boundary conditions. Key features: Includes analytical solving of mixed boundary value problems; Introduces modern asymptotic and summation procedures; Presents asymptotic approaches for nonlinear dynamics of rods, beams and plates; Covers statics, dynamics and stability of plates with mixed boundary conditions; Explains links between the Adomian and homotopy perturbation approaches. This is a comprehensive reference for researchers and practitioners working in the field of Mechanics of Solids and Mechanical Engineering, and is also a valuable resource for graduate and postgraduate students from Civil and Mechanical Engineering. --  |c Edited summary from book. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; List of Abbreviations; Chapter 1 Asymptotic Approaches; 1.1 Asymptotic Series and Approximations; 1.1.1 Asymptotic Series; 1.1.2 Asymptotic Symbols and Nomenclatures; 1.2 Some Nonstandard Perturbation Procedures; 1.2.1 Choice of Small Parameters; 1.2.2 Homotopy Perturbation Method; 1.2.3 Method of Small Delta; 1.2.4 Method of Large Delta; 1.2.5 Application of Distributions; 1.3 Summation of Asymptotic Series; 1.3.1 Analysis of Power Series; 1.3.2 Padé Approximants and Continued Fractions; 1.4 Some Applications of PA. 
505 8 |a 1.4.1 Accelerating Convergence of Iterative Processes1.4.2 Removing Singularities and Reducing the Gibbs-Wilbraham Effect; 1.4.3 Localized Solutions; 1.4.4 Hermite-Padé Approximations and Bifurcation Problem; 1.4.5 Estimates of Effective Characteristics of Composite Materials; 1.4.6 Continualization; 1.4.7 Rational Interpolation; 1.4.8 Some Other Applications; 1.5 Matching of Limiting Asymptotic Expansions; 1.5.1 Method of Asymptotically Equivalent Functions for Inversion of Laplace Transform; 1.5.2 Two-Point PA; 1.5.3 Other Methods of AEFs Construction; 1.5.4 Example: Schrödinger Equation. 
505 8 |a 1.5.5 Example: AEFs in the Theory of Composites1.6 Dynamical Edge Effect Method; 1.6.1 Linear Vibrations of a Rod; 1.6.2 Nonlinear Vibrations of a Rod; 1.6.3 Nonlinear Vibrations of a Rectangular Plate; 1.6.4 Matching of Asymptotic and Variational Approaches; 1.6.5 On the Normal Forms of Nonlinear Vibrations of Continuous Systems; 1.7 Continualization; 1.7.1 Discrete and Continuum Models in Mechanics; 1.7.2 Chain of Elastically Coupled Masses; 1.7.3 Classical Continuum Approximation; 1.7.4 ""Splashes''; 1.7.5 Envelope Continualization; 1.7.6 Improvement Continuum Approximations. 
505 8 |a 1.7.7 Forced Oscillations1.8 Averaging and Homogenization; 1.8.1 Averaging via Multiscale Method; 1.8.2 Frozing in Viscoelastic Problems; 1.8.3 The WKB Method; 1.8.4 Method of Kuzmak-Whitham (Nonlinear WKB Method); 1.8.5 Differential Equations with Quickly Changing Coefficients; 1.8.6 Differential Equation with Periodically Discontinuous Coefficients; 1.8.7 Periodically Perforated Domain; 1.8.8 Waves in Periodically Nonhomogenous Media; References; Chapter 2 Computational Methods for Plates and Beams with Mixed Boundary Conditions; 2.1 Introduction. 
505 8 |a 2.1.1 Computational Methods of Plates with Mixed Boundary Conditions2.1.2 Method of Boundary Conditions Perturbation; 2.2 Natural Vibrations of Beams and Plates; 2.2.1 Natural Vibrations of a Clamped Beam; 2.2.2 Natural Vibration of a Beam with Free Ends; 2.2.3 Natural Vibrations of a Clamped Rectangular Plate; 2.2.4 Natural Vibrations of the Orthotropic Plate with Free Edges Lying on an Elastic Foundation; 2.2.5 Natural Vibrations of the Plate with Mixed Boundary Conditions ""Clamping-Simple Support''; 2.2.6 Comparison of Theoretical and Experimental Results. 
650 0 |a Plates (Engineering)  |x Mathematical models. 
650 0 |a Asymptotic expansions. 
650 4 |a Asymptotic expansions. 
650 4 |a Finite element method. 
650 4 |a Plates (Engineering)  |x Mathematical models. 
650 4 |a Plates (Engineering) 
650 7 |a TECHNOLOGY & ENGINEERING  |x Civil  |x General.  |2 bisacsh 
650 7 |a Asymptotic expansions.  |2 fast  |0 (OCoLC)fst00819868 
650 7 |a Plates (Engineering)  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01066793 
655 4 |a Electronic books. 
700 1 |a Awrejcewicz, J.  |q (Jan) 
700 1 |a Danishevskiĭ, V. V.  |q (Vladislav Valentinovich) 
700 1 |a Ivankov, Andrey. 
776 0 8 |i Print version:  |a Andrianov, I.V. (Igorʹ Vasilʹevich), 1948-  |t Asymptotic methods in the theory of plates with mixed boundary conditions.  |d Chichester, West Sussex, United Kingdom : John Wiley & Sons, Ltd., 2014  |z 9781118725191  |w (DLC) 2013034287 
856 4 0 |u https://doi.org/10.1002/9781118725184  |z Full Text via HEAL-Link 
994 |a 92  |b DG1