Theory of computational complexity /

Praise for the First Edition "" ... complete, up-to-date coverage of computational complexity theory ... the book promises to become the standard reference on computational complexity.""--Zentralblatt MATH A thorough revision based on advances in the field of computational comple...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Du, Dingzhu (Συγγραφέας), Ko, Ker-I (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : John Wiley & Sons, 2014.
Έκδοση:Second edition.
Σειρά:Wiley-Interscience series in discrete mathematics and optimization.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Cover; Title Page; Contents; Preface; Notes on the Second Edition; Part I Uniform Complexity; Chapter 1 Models of Computation and Complexity Classes; 1.1 Strings, Coding, and Boolean Functions; 1.2 Deterministic Turing Machines; 1.3 Nondeterministic Turing Machines; 1.4 Complexity Classes; 1.5 Universal Turing Machine; 1.6 Diagonalization; 1.7 Simulation; Exercises; Historical Notes; Chapter 2 NP-Completeness; 2.1 NP; 2.2 Cook's Theorem; 2.3 More NP-Complete Problems; 2.4 Polynomial-Time Turing Reducibility; 2.5 NP-Complete Optimization Problems; Exercises; Historical Notes.
  • Chapter 3 The Polynomial-Time Hierarchy and Polynomial Space3.1 Nondeterministic Oracle Turing Machines; 3.2 Polynomial-Time Hierarchy; 3.3 Complete Problems in PH; 3.4 Alternating Turing Machines; 3.5 PSPACE-Complete Problems; 3.6 EXP-Complete Problems; Exercises; Historical Notes; Chapter 4 Structure of NP; 4.1 Incomplete Problems in NP; 4.2 One-Way Functions and Cryptography; 4.3 Relativization; 4.4 Unrelativizable Proof Techniques; 4.5 Independence Results; 4.6 Positive Relativization; 4.7 Random Oracles; 4.8 Structure of Relativized NP; Exercises; Historical Notes.
  • Part II Nonuniform ComplexityChapter 5 Decision Trees; 5.1 Graphs and Decision Trees; 5.2 Examples; 5.3 Algebraic Criterion; 5.4 Monotone Graph Properties; 5.5 Topological Criterion; 5.6 Applications of the Fixed Point Theorems; 5.7 Applications of Permutation Groups; 5.8 Randomized Decision Trees; 5.9 Branching Programs; Exercises; Historical Notes; Chapter 6 Circuit Complexity; 6.1 Boolean Circuits; 6.2 Polynomial-Size Circuits; 6.3 Monotone Circuits; 6.4 Circuits with Modulo Gates; 6.5 NC; 6.6 Parity Function; 6.7 P-Completeness; 6.8 Random Circuits and RNC; Exercises; Historical Notes.
  • Chapter 7 Polynomial-Time Isomorphism7.1 Polynomial-Time Isomorphism; 7.2 Paddability; 7.3 Density of NP-Complete Sets; 7.4 Density of EXP-Complete Sets; 7.5 One-Way Functions and Isomorphism in EXP; 7.6 Density of P-Complete Sets; Exercises; Historical Notes; Part III Probabilistic Complexity; Chapter 8 Probabilistic Machines and Complexity Classes; 8.1 Randomized Algorithms; 8.2 Probabilistic Turing Machines; 8.3 Time Complexity of Probabilistic Turing Machines; 8.4 Probabilistic Machines with Bounded Errors; 8.5 BPP and P; 8.6 BPP and NP; 8.7 BPP and the Polynomial-Time Hierarchy.
  • 8.8 Relativized Probabilistic Complexity ClassesExercises; Historical Notes; Chapter 9 Complexity of Counting; 9.1 Counting Class #P; 9.2 #P-Complete Problems; 9.3 oplus P and the Polynomial-Time Hierarchy; 9.4 #P and the Polynomial-Time Hierarchy; 9.5 Circuit Complexity and Relativized oplus P and #P; 9.6 Relativized Polynomial-Time Hierarchy; Exercises; Historical Notes; Chapter 10 Interactive Proof Systems; 10.1 Examples and Definitions; 10.2 Arthur-Merlin Proof Systems; 10.3 AM Hierarchy Versus Polynomial-Time Hierarchy; 10.4 IP Versus AM; 10.5 IP Versus PSPACE; Exercises.