Offshore wind energy generation : control, protection, and integration to electrical systems /
Equipping electrical engineers for the engineering challenges in utility-scale offshore wind farms, this important reference sets out the fundamentals and latest innovations in electrical systems and control strategies deployed in offshore electricity grids for wind power integration. --
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Chichester, West Sussex :
John Wiley & Sons Inc.,
[2014]
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Title Page; Copyright; Preface; About the Authors; Acronyms and Symbols; Chapter 1: Offshore Wind Energy Systems; 1.1 Background; 1.2 Typical Subsystems; 1.3 Wind Turbine Technology; 1.4 Offshore Transmission Networks; 1.5 Impact on Power System Operation; 1.6 Grid Code Regulations for the Connection of Wind Generation; Acknowledgements; References; Chapter 2: DFIG Wind Turbine; 2.1 Introduction; 2.2 DFIG Architecture and Mathematical Modelling; 2.3 Control of the DFIG WT; 2.4 DFIG Dynamic Performance Assessment; 2.5 Fault Ride-Through Capabilities and Grid Code Compliance
- 2.6 Enhanced Control Strategies to Improve DFIG Fault Ride-Through CapabilitiesReferences; Notes; Chapter 3: Fully-Rated Converter Wind Turbine (FRC-WT); 3.1 Synchronous Machine Fundamentals; 3.2 Synchronous Generator Modelling in the dq Frame; 3.3 Control of Large Synchronous Generators; 3.4 Fully-Rated Converter Wind Turbines; 3.5 FRC-WT with Synchronous Generator; 3.6 FRC-WT with Squirrel-Cage Induction Generator; 3.7 FRC-WT Power System Damper; Acknowledgements; References; Chapter 4: Offshore Wind Farm Electrical Systems; 4.1 Typical Components
- 4.2 Wind Turbines for Offshore
- General Aspects4.3 Electrical Collectors; 4.4 Offshore Transmission; 4.5 Offshore Substations; 4.6 Reactive Power Compensation Equipment; 4.7 Subsea Cables; Acknowledgements; References; Chapter 5: Grid Integration of Offshore Wind Farms
- Case Studies; 5.1 Background; 5.2 Offshore Wind Farm Connection Using Point-to-Point VSC-HVDC Transmission; 5.3 Offshore Wind Farm Connection Using HVAC Transmission; 5.4 Offshore Wind Farm Connected Using Parallel HVAC/VSC-HVDC Transmission; 5.5 Offshore Wind Farms Connected Using a Multi-Terminal VSC-HVDC Network
- 5.6 Multi-Terminal VSC-HVDC for Connection of Inter-Regional Power SystemsAcknowledgements; References; Chapter 6: Offshore Wind Farm Protection; 6.1 Protection within the Wind Farm ac Network; 6.2 Study of Faults in the ac Transmission Line of an Offshore DFIG Wind Farm; 6.3 Protections for dc Connected Offshore Wind Farms; Acknowledgements; References; Chapter 7: Emerging Technologies for Offshore Wind Integration; 7.1 Wind Turbine Advanced Control for Load Mitigation; 7.2 Converter Interface Arrangements and Collector Design; 7.3 Dc Transmission Protection
- 7.4 Energy Storage Systems (EESs)7.5 Fault Current Limiters (FCLs); 7.6 Sub-Sea Substations; 7.7 HTSCs, GITs and GILs; 7.8 Developments in Condition Monitoring; 7.9 Smart Grids for Large-Scale Offshore Wind Integration; Acknowledgements; References; A: Voltage Source Converter Topologies; A.1 Two-Level Converter; A.2 Neutral-Point Clamped Converter; A.3 Flying Capacitor (FC) Multilevel Converter; A.4 Cascaded Multilevel Converter; A.5 Modular Multilevel Converter; References; B: Worked-out Examples; Exercise 1; Exercise 2; Exercise 3; Exercise 4; Exercise 5; Exercise 6; Index