Advances in Photovoltaics. Part 2 /
Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series...
Άλλοι συγγραφείς: | , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston :
Elsevier,
2013.
|
Σειρά: | Semiconductors and semimetals ;
v. 89. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Advances in Photovoltaics: Part 2; Copyright; Contents; Contributors; Preface; Chapter One: The Physics of Industrial Crystalline Silicon Solar Cells; 1. Introduction and Chapter Methodology; 2. Basic Theory of Solar Cells; 2.1. Solar cell in thermal equilibrium; 2.2. Biased solar cell; 2.3. Analysis of the bulk lifetime; 2.4. Depletion region recombination; 2.5. Illuminated solar cell; 2.6. Reverse current; 3. Theory Versus Experiment; 4. Origins of Nonideal Characteristics; 4.1. The depletion region recombination (second diode) current; 4.2. The diffusion (first diode) current.
- 4.3. The ohmic current4.4. The reverse current; 4.5. Relation between dark and illuminated characteristics; 5. Summary and Outlook; Acknowledgments; References; Chapter Two: Metallurgical Grade and Metallurgically Refined Silicon for Photovoltaics; 1. Introduction; 2. Metallurgical Grade Silicon; 2.1. Production of raw silicon; 2.2. Solar grade silicon by direct route; 3. Solar Silicon from Metallurgical Purification Route; 3.1. Acid leaching; 3.2. Slag treatment of the silicon melt; 3.3. Vacuum degassing of the silicon melt; 3.4. Purification of liquid silicon using gases or water vapor.
- 3.5. Plasma treatment of the silicon melt3.6. Segregation during solidification; 3.7. Refining silicon from Si-Al melt solutions; 3.8. Particle removal from liquid silicon; 4. The Final Material; Acknowledgments; References; Chapter Three: Crystalline Silicon PV Module Technology; 1. c-Si PV Module Technology; 1.1. Common module design; 1.2. Solar cells from a module perspective; 1.2.1. Active cell surface; 1.2.2. Metallization; 1.2.3. Spectral response; 1.2.4. Power temperature coefficient; 1.2.5. Thermal expansion; 1.2.6. Reverse bias operation; 1.2.7. Mechanical strength.
- 1.3. Additional module components and their critical properties1.3.1. Front cover; 1.3.2. Encapsulant; 1.3.3. Ribbon; 1.3.4. Back cover; 1.3.5. Junction box and diodes; 1.3.6. Frame; 1.4. Efficiency from cell to module; 1.4.1. Aperture losses; 1.4.2. Electrical efficiency; 1.4.2.1. Front-side resistance; 1.4.2.2. Back side resistance; 1.4.3. Optical efficiency; 1.5. Module assembly processes; 1.5.1. Process steps; 1.5.2. Receiving inspections; 1.5.3. Cell inspection; 1.5.4. Cell stringing; 1.5.4.1. Flux; 1.5.4.2. Soldering; 1.5.5. Critical parameters for cell stress; 1.5.6. String inspection.
- 1.5.6.1. Peel test and fracture analysis1.5.6.2. Metallography, SEM, and X-ray; 1.5.7. Laminate testing; 1.5.7.1. Encapsulant adhesion; 1.5.7.2. Gel content; 1.5.8. Production equipment; 1.6. Alternative module concepts; 1.6.1. Back-contact technology; 1.6.1.1. Cell types and interconnection challenges; 1.6.1.2. Manufacturing process; 1.6.1.3. Interconnection process; 1.6.1.4. Interconnector material; 1.6.2. Edge-seal technology; 1.6.3. Multiwire stringing; References; Chapter Four: Glass and Other Encapsulation Materials; 1. Introduction; 2. Technology of Solar Glass Production.