Xenopus development /

"Xenopus frogs have long been used as model organisms in basic and biomedical research. These frogs have helped unlock basic developmental and cellular processes that have led to scientific breakthroughs and have had practical application in cancer research and regenerative medicine. Xenopus De...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, NJ : Malden, MA : Wiley-Blackwell, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 09576nam a2200793 4500
001 ocn868150972
003 OCoLC
005 20170124070308.8
006 m o d
007 cr |||||||||||
008 140113s2014 iau ob 001 0 eng
010 |a  2014001231 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDX  |d N$T  |d IDEBK  |d DG1  |d YDXCP  |d RECBK  |d CDX  |d GZM  |d E7B  |d EBLCP  |d CCO  |d DEBSZ  |d OCLCO  |d COO  |d DEBBG  |d GrThAP 
019 |a 874321389  |a 961553262  |a 962561440 
020 |a 9781118492826 (ePub) 
020 |a 111849282X (ePub) 
020 |a 9781118492840 (Adobe PDF) 
020 |a 1118492846 (Adobe PDF) 
020 |z 9781118492819 (hardback) 
020 |a 9781118492833 
020 |a 1118492838 
020 |a 1118492811 
020 |a 9781118492819 
029 1 |a CHBIS  |b 010259551 
029 1 |a CHVBK  |b 32593973X 
029 1 |a NZ1  |b 15568334 
029 1 |a NZ1  |b 15906708 
029 1 |a DEBSZ  |b 431652287 
029 1 |a DEBBG  |b BV043396477 
035 |a (OCoLC)868150972  |z (OCoLC)874321389  |z (OCoLC)961553262  |z (OCoLC)962561440 
042 |a pcc 
050 0 0 |a QL668.E265 
072 7 |a NAT  |x 012000  |2 bisacsh 
072 7 |a SCI  |x 070010  |2 bisacsh 
082 0 0 |a 597.8/654  |2 23 
084 |a SCI072000  |2 bisacsh 
049 |a MAIN 
245 0 0 |a Xenopus development /  |c edited by Malgorzata Kloc, Jacek Z. Kubiak. 
264 1 |a Hoboken, NJ : Malden, MA :  |b Wiley-Blackwell,  |c 2014. 
300 |a 1 online resource. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
520 |a "Xenopus frogs have long been used as model organisms in basic and biomedical research. These frogs have helped unlock basic developmental and cellular processes that have led to scientific breakthroughs and have had practical application in cancer research and regenerative medicine. Xenopus Developmentdiscusses the biology and development of this important genus, and will be a great tool to researchers using these frogs in their research. Divided into four sections, the highlights key Xenopus development from embryo to metamorphosis, and the cellular processes, organogenesis, and biological development"--  |c Provided by publisher. 
520 |a "Provides broad overview of the developmental biology of both Xenopus laevis and Xenopus tropicalis"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
500 |a Machine generated contents note: I. Oocyte and early embryo 1. Polarity, cell cycle control and developmental potential of Xenous laevis oocyte. Malgorzata Kloc & Jacek Z. Kubiak. (The Methodist Hospital, Houston, USA & IGDR, CNRS/Univ. Rennes 1, France). 2. Cell cycle regulation & cytoskeleton in Xenopus. Marc W. Kirschner (Harvard University, USA) or Kinases and phosphatases in Xenopus oocytes and embryos. Tim Hunt (University of Cambridge, GB) or Randall W. King (Harvard University, USA). 3. DNA replication and repair in Xenopus. Julian J. Blow (University of Dundee, Wellcome Trust Centre for Gene Regulation & Expression, GB) or Marcel Mechali (IGH, CNRS, Montpellier, France). 4. Gene expression in Xenopus laevis development and nuclear transfer. John B. Gurdon (The Wellcome Trust/Cancer Research UK Gurdon Institute, GB). 5. Translational control in Xenopus development. Joel D. Richter (Univ. of Massachusetts, USA). II. Midblastula transition, gastrulation and neurulation 6. Apoptosis in Xenopus embryos. Sally Kornbluth (Duke University, USA) or Jean Gautier Columbia University College of Physicians and Surgeons, New York, USA. 7. Cell cleavage and polarity in Xenopus leavis embryo epithelium. Jean-Pierre Tassan (IGDR, CNRS/Univ. Rennes, France) or John B. Wallingford (University of Texas at Austin, TX, USA) 8. Germ cell specification, Mary Lou King (University of Miami, USA). 9. Mesoderm formation in Xenopus. James C. Smith (The Gurdon Institute, GB) or Laurent Kodjabachian (CNRS/Univ. Provence, Marseille, France) or Sergei Y. Sokol (Mount Sinai School of Medicine, New York, USA) or Eddy De Robertis (University of California, Los Angeles, USA) or Pierre McCrea (MDAnderson Cancer Center, Houston TX, USA). 10. Neural tube formation in Xenopus. Naoto Ueno (National Institute for Basic Biology, Okazaki, Japan.). 11. Left-right axis control in Xenopus development. Ali H. Brivanlou (The Rockefeller University, New York, USA). III. Metamorphosis and organogenesis 12. Metamorphosis and endocrine system development in Xenopus. Barbara A. Demeneix (CNRS, Paris, France). 13. Xenopus laevis kidney development. Rachel Miller (MD Anderson Cancer Center, University of Texas, Houston, USA). 14. Xenopus nervous system development. Christine E. Holt (Cambridge University, GB) or Eric J. Bellefroid (Universite Libre de Bruxelles, Institut de biologie et de medecine moleculaires, Belgium). 15. Gonads development in Xenopus and other anurans. Rafal P. Piprek (Jagiellonian University, Krakow, Poland). 16. Immune system development in Xenopus. Louis Du Pasquier (Universitat Basel, Switzerland). IV. Novel techniques and approaches 17. MicroRNA in Xenopus development. Nancy Papalopulu (University of Manchester, GB). 18. Genetics of Xenopus tropicalis development. Richard M. Harland (University of California, Berkeley, USA) or Nicolas Pollet (Institute of Systems and Synthetic Biology, Genopole, CNRS, Universite d'Evry Val d'Essonne, Evry, France). 19. Transgenic Xenopus laevis as an experimental tool for amphibian regeneration study. Yoko Ueda (Nara Women's University, Nara, Japan). 20. The Xenopus model for regeneration research. Jonathan MW Slack (Centre for Regenerative Medicine, University of Bath, Bath, BA2 7AY, United Kingdom and Stem and Cell Institute, University of Minnesota, MN, USA). . 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 |a Xenopus Development; Copyright; Contents; Contributors; Preface; Section I Oocyte and Early Embryo; 1 Transcription in the Xenopus Oocyte Nucleus; Introduction; LBC structure: The standard model; Chromomeres and loops; Transcription on LBC loops; Transcripts produced during oogenesis; In situ hybridization of nascent transcripts on individual LBC loops; Appendix; Acknowledgments; References; 2 RNA Localization during Oogenesis in Xenopus laevis; Xenopus oocytes as a model system for exploring RNA localization; Cis -elements and the role of short repeated motifs. 
505 8 |a Proteins, RNAs, and the endoplasmic reticulumMechanism(s) for RNA localization to the vegetal cortex; Looking toward the future; References; 3 From Oocyte to Fertilizable Egg: Regulated mRNA Translation and the Control of Maternal Gene Expression; Mechanisms of mRNA translational control: Global versus selective targeting; Sequestration of maternal mRNA contributes to control of gene expression during Xenopus oogenesis; Future perspectives; Acknowledgments; References; 4 Polarity of Xenopus Oocytes and Early Embryos; Oocyte polarity and embryonic axes. 
505 8 |a Development of A-V polarity during oogenesisVegetal hemisphere maternal factors; Vegetal cortex; Animal hemisphere maternal factors; Asymmetry of inorganic maternal factors; Maternal determination of planar and basolateral polarity and L-R asymmetry; Conclusions; References; 5 Germ-Cell Specification in Xenopus; Background; Formation of the Xenopus germline; Molecular components of germ plasm; Do chromatin modifications play a role in Xenopus PGC specification?; Concluding remarks; Acknowledgments; References; Section II Midblastula Transition, Gastrulation, and Neurulation. 
505 8 |a 6 The Xenopus Embryo as a Model System to Study Asymmetric Furrowing in Vertebrate Epithelial CellsIntroduction; MELK is a cell cycle-regulated kinase involved in development and cancer; MELK in Xenopus laevis embryo cytokinesis; Asymmetric furrowing is a mode of cytokinesis conserved throughout evolution; The Xenopus embryo as a model system to analyze asymmetric furrowing; Conclusions; Acknowledgments; References; 7 Induction and Differentiation of the Xenopus Ciliated Embryonic Epidermis; Introduction; Nonneural ectoderm specification; Ontogeny of the mucociliary epithelium. 
505 8 |a Perspectives and outstanding questionsConcluding remarks; References; 8 Wnt Signaling during Early Xenopus Development; Introduction; Wnt "canonical" and "noncanonical" pathways: Complexity and uncertainties; Major processes regulated by Wnts during early Xenopus development; Wnt signaling at postgastrula stages; References; 9 Neural Tube Closure in Xenopus; Introduction; Narrowing and elongation of the neural plate; Cell-shape changes causing neural tube morphogenesis; Complete tube closure assisted by nonneural ectoderm; References; Section III Metamorphosis and Organogenesis. 
650 0 |a Xenopus laevis. 
650 0 |a Xenopus  |x Larvae  |x Microbiology. 
650 0 |a Microorganisms  |x Development. 
650 0 |a Embryology. 
650 7 |a SCIENCE / Life Sciences / Biology / Developmental Biology.  |2 bisacsh 
650 4 |a Embryology. 
650 4 |a Microorganisms  |x Development. 
650 4 |a Xenopus  |x Larvae  |x Microbiology. 
650 4 |a Xenopus laevis. 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
700 1 |a Kloc, Malgorzata,  |e editor of compilation. 
700 1 |a Kubiak, Jacek Z,  |e editor of compilation. 
776 0 8 |i Print version:  |t Xenopus development  |d Ames, Iowa : Wiley-Blackwell, 2014  |z 9781118492819  |w (DLC) 2014000055 
856 4 0 |u https://doi.org/10.1002/9781118492833  |z Full Text via HEAL-Link 
994 |a 92  |b DG1