Unsupervised learning : a dynamic approach /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kyan, Matthew
Άλλοι συγγραφείς: Muneesawang, Paisarn, Jarrah, Kambiz, Guan, Ling
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]
Σειρά:IEEE series on computational intelligence.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05348nam a2200877 4500
001 ocn869552625
003 OCoLC
005 20170124071650.9
006 m o d
007 cr |||||||||||
008 140129s2014 nju ob 001 0 eng
010 |a  2014003781 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d E7B  |d DG1  |d N$T  |d YDXCP  |d CDX  |d COO  |d IEEEE  |d OCLCF  |d OCLCQ  |d DEBBG  |d EBLCP  |d GrThAP 
019 |a 961618931  |a 962635691 
020 |a 9781118875346  |q (ePub) 
020 |a 1118875346  |q (ePub) 
020 |a 9781118875230  |q (Adobe PDF) 
020 |a 1118875230  |q (Adobe PDF) 
020 |a 9781118875568 
020 |a 1118875567 
020 |a 9781306731621 
020 |a 1306731623 
020 |z 9780470278338  |q (cloth) 
020 |z 0470278331 
029 1 |a CHBIS  |b 010259698 
029 1 |a CHNEW  |b 000677230 
029 1 |a CHNEW  |b 000697728 
029 1 |a CHVBK  |b 325942919 
029 1 |a NLGGC  |b 376089024 
029 1 |a NZ1  |b 15581417 
029 1 |a NZ1  |b 15906865 
029 1 |a DEBBG  |b BV043396516 
029 1 |a CHVBK  |b 374464375 
029 1 |a CHNEW  |b 000887520 
035 |a (OCoLC)869552625  |z (OCoLC)961618931  |z (OCoLC)962635691 
042 |a pcc 
050 0 0 |a QA76.9.D3 
072 7 |a COM  |x 021000  |2 bisacsh 
072 7 |a COM  |x 084010  |2 bisacsh 
072 7 |a COM  |x 030000  |2 bisacsh 
082 0 0 |a 005.74  |2 23 
049 |a MAIN 
100 1 |a Kyan, Matthew. 
245 1 0 |a Unsupervised learning :  |b a dynamic approach /  |c Matthew Kyan, Paisarn Muneesawang, Kambiz Jarrah, Ling Guan. 
264 1 |a Hoboken, New Jersey :  |b John Wiley & Sons, Inc.,  |c [2014] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IEEE Press series on computational intelligence 
588 0 |a Print version record and CIP data provided by publisher. 
504 |a Includes bibliographical references and index. 
505 0 |a IEEE Press; Titlepage; Copyright; Acknowledgments; 1 Introduction; 1.1 Part I: The Self-Organizing Method; 1.2 Part II: Dynamic Self-Organization for Image Filtering and Multimedia Retrieval; 1.3 Part III: Dynamic Self-Organization for Image Segmentation and Visualization; 1.4 Future Directions; 2 Unsupervised Learning; 2.1 Introduction; 2.2 Unsupervised Clustering; 2.3 Distance Metrics for Unsupervised Clustering; 2.4 Unsupervised Learning Approaches; 2.5 Assessing Cluster Quality and Validity; 3 Self-Organization; 3.1 Introduction; 3.2 Principles of Self-Organization 
505 8 |a 3.3 Fundamental Architectures3.4 Other Fixed Architectures for Self-Organization; 3.5 Emerging Architectures for Self-Organization; 3.6 Conclusion; 4 Self-Organizing Tree Map; 4.1 Introduction; 4.2 Architecture; 4.3 Competitive Learning; 4.4 Algorithm; 4.5 Evolution; 4.6 Practical Considerations, Extensions, and Refinements; 4.7 Conclusions; Notes; 5 Self-Organization in Impulse Noise Removal; 5.1 Introduction; 5.2 Review of Traditional Median-Type Filters; 5.3 The Noise-Exclusive Adaptive Filtering; 5.4 Experimental Results; 5.5 Detection-Guided Restoration and Real-Time Processing 
505 8 |a 5.6 Conclusions6 Self-Organization in Image Retrieval; 6.1 Retrieval of Visual Information; 6.2 Visual Feature Descriptor; 6.3 User-Assisted Retrieval; 6.4 Self-Organization for Pseudo Relevance Feedback; 6.5 Directed Self-Organization; 6.6 Optimizing Self-Organization for Retrieval; 6.7 Retrieval Performance; 6.8 Summary; 7 The Self-Organizing Hierarchical Variance Map:; 7.1 An Intuitive Basis; 7.2 Model Formulation and Breakdown; 7.3 Algorithm; 7.4 Simulations and Evaluation; 7.5 Tests on Self-Determination and the Optional Tuning Stage 
505 8 |a 7.6 Cluster Validity Analysis on Synthetic and UCI Data7.7 Summary; 8 Microbiological Image Analysis Using Self-Organization; 8.1 Image Analysis in the Biosciences; 8.2 Image Analysis Tasks Considered; 8.3 Microbiological Image Segmentation; 8.4 Image Segmentation Using Hierarchical Self-Organization; 8.5 Harvesting Topologies to Facilitate Visualization; 8.6 Summary; Notes; 9 Closing Remarks and Future Directions; 9.1 Summary of Main Findings; 9.2 Future Directions; Appendix A; A.1 Global and Local Consistency Error; References; Index; IEEE Press Series; End User License Agreement 
650 0 |a Database management. 
650 0 |a Self-organizing systems. 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 7 |a COMPUTERS  |x Databases  |x General.  |2 bisacsh 
650 7 |a COMPUTERS  |x Desktop Applications  |x Databases.  |2 bisacsh 
650 7 |a COMPUTERS  |x System Administration  |x Storage & Retrieval.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Database management.  |2 fast  |0 (OCoLC)fst00888037 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Self-organizing systems.  |2 fast  |0 (OCoLC)fst01111791 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
700 1 |a Muneesawang, Paisarn. 
700 1 |a Jarrah, Kambiz. 
700 1 |a Guan, Ling. 
776 0 8 |i Print version:  |a Kyan, Matthew.  |t Unsupervised learning.  |d Hoboken, New Jersey : John Wiley & Sons Inc., [2014]  |z 9780470278338  |w (DLC) 2013046024 
830 0 |a IEEE series on computational intelligence. 
856 4 0 |u https://doi.org/10.1002/9781118875568  |z Full Text via HEAL-Link 
994 |a 92  |b DG1