|
|
|
|
LEADER |
05348nam a2200877 4500 |
001 |
ocn869552625 |
003 |
OCoLC |
005 |
20170124071650.9 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
140129s2014 nju ob 001 0 eng |
010 |
|
|
|a 2014003781
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d E7B
|d DG1
|d N$T
|d YDXCP
|d CDX
|d COO
|d IEEEE
|d OCLCF
|d OCLCQ
|d DEBBG
|d EBLCP
|d GrThAP
|
019 |
|
|
|a 961618931
|a 962635691
|
020 |
|
|
|a 9781118875346
|q (ePub)
|
020 |
|
|
|a 1118875346
|q (ePub)
|
020 |
|
|
|a 9781118875230
|q (Adobe PDF)
|
020 |
|
|
|a 1118875230
|q (Adobe PDF)
|
020 |
|
|
|a 9781118875568
|
020 |
|
|
|a 1118875567
|
020 |
|
|
|a 9781306731621
|
020 |
|
|
|a 1306731623
|
020 |
|
|
|z 9780470278338
|q (cloth)
|
020 |
|
|
|z 0470278331
|
029 |
1 |
|
|a CHBIS
|b 010259698
|
029 |
1 |
|
|a CHNEW
|b 000677230
|
029 |
1 |
|
|a CHNEW
|b 000697728
|
029 |
1 |
|
|a CHVBK
|b 325942919
|
029 |
1 |
|
|a NLGGC
|b 376089024
|
029 |
1 |
|
|a NZ1
|b 15581417
|
029 |
1 |
|
|a NZ1
|b 15906865
|
029 |
1 |
|
|a DEBBG
|b BV043396516
|
029 |
1 |
|
|a CHVBK
|b 374464375
|
029 |
1 |
|
|a CHNEW
|b 000887520
|
035 |
|
|
|a (OCoLC)869552625
|z (OCoLC)961618931
|z (OCoLC)962635691
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA76.9.D3
|
072 |
|
7 |
|a COM
|x 021000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 084010
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 030000
|2 bisacsh
|
082 |
0 |
0 |
|a 005.74
|2 23
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Kyan, Matthew.
|
245 |
1 |
0 |
|a Unsupervised learning :
|b a dynamic approach /
|c Matthew Kyan, Paisarn Muneesawang, Kambiz Jarrah, Ling Guan.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b John Wiley & Sons, Inc.,
|c [2014]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a IEEE Press series on computational intelligence
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a IEEE Press; Titlepage; Copyright; Acknowledgments; 1 Introduction; 1.1 Part I: The Self-Organizing Method; 1.2 Part II: Dynamic Self-Organization for Image Filtering and Multimedia Retrieval; 1.3 Part III: Dynamic Self-Organization for Image Segmentation and Visualization; 1.4 Future Directions; 2 Unsupervised Learning; 2.1 Introduction; 2.2 Unsupervised Clustering; 2.3 Distance Metrics for Unsupervised Clustering; 2.4 Unsupervised Learning Approaches; 2.5 Assessing Cluster Quality and Validity; 3 Self-Organization; 3.1 Introduction; 3.2 Principles of Self-Organization
|
505 |
8 |
|
|a 3.3 Fundamental Architectures3.4 Other Fixed Architectures for Self-Organization; 3.5 Emerging Architectures for Self-Organization; 3.6 Conclusion; 4 Self-Organizing Tree Map; 4.1 Introduction; 4.2 Architecture; 4.3 Competitive Learning; 4.4 Algorithm; 4.5 Evolution; 4.6 Practical Considerations, Extensions, and Refinements; 4.7 Conclusions; Notes; 5 Self-Organization in Impulse Noise Removal; 5.1 Introduction; 5.2 Review of Traditional Median-Type Filters; 5.3 The Noise-Exclusive Adaptive Filtering; 5.4 Experimental Results; 5.5 Detection-Guided Restoration and Real-Time Processing
|
505 |
8 |
|
|a 5.6 Conclusions6 Self-Organization in Image Retrieval; 6.1 Retrieval of Visual Information; 6.2 Visual Feature Descriptor; 6.3 User-Assisted Retrieval; 6.4 Self-Organization for Pseudo Relevance Feedback; 6.5 Directed Self-Organization; 6.6 Optimizing Self-Organization for Retrieval; 6.7 Retrieval Performance; 6.8 Summary; 7 The Self-Organizing Hierarchical Variance Map:; 7.1 An Intuitive Basis; 7.2 Model Formulation and Breakdown; 7.3 Algorithm; 7.4 Simulations and Evaluation; 7.5 Tests on Self-Determination and the Optional Tuning Stage
|
505 |
8 |
|
|a 7.6 Cluster Validity Analysis on Synthetic and UCI Data7.7 Summary; 8 Microbiological Image Analysis Using Self-Organization; 8.1 Image Analysis in the Biosciences; 8.2 Image Analysis Tasks Considered; 8.3 Microbiological Image Segmentation; 8.4 Image Segmentation Using Hierarchical Self-Organization; 8.5 Harvesting Topologies to Facilitate Visualization; 8.6 Summary; Notes; 9 Closing Remarks and Future Directions; 9.1 Summary of Main Findings; 9.2 Future Directions; Appendix A; A.1 Global and Local Consistency Error; References; Index; IEEE Press Series; End User License Agreement
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Self-organizing systems.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Big data.
|
650 |
|
7 |
|a COMPUTERS
|x Databases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Desktop Applications
|x Databases.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x System Administration
|x Storage & Retrieval.
|2 bisacsh
|
650 |
|
7 |
|a Big data.
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Database management.
|2 fast
|0 (OCoLC)fst00888037
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Self-organizing systems.
|2 fast
|0 (OCoLC)fst01111791
|
655 |
|
4 |
|a Electronic books.
|
655 |
|
0 |
|a Electronic books.
|
700 |
1 |
|
|a Muneesawang, Paisarn.
|
700 |
1 |
|
|a Jarrah, Kambiz.
|
700 |
1 |
|
|a Guan, Ling.
|
776 |
0 |
8 |
|i Print version:
|a Kyan, Matthew.
|t Unsupervised learning.
|d Hoboken, New Jersey : John Wiley & Sons Inc., [2014]
|z 9780470278338
|w (DLC) 2013046024
|
830 |
|
0 |
|a IEEE series on computational intelligence.
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9781118875568
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|