Advanced energy materials /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Valyukh, Sergiy
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : John Wiley & Sons, [2014]
Σειρά:Advance materials series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1.1.Introduction / Kok-Keong Chong
  • 1.2.The Principle of Non-imaging Focusing Heliostat (NIFH) / Kok-Keong Chong
  • 1.2.1.Primary Tracking (Global Movement for Heliostat Frame) / Kok-Keong Chong
  • 1.2.2.Secondary Tracking (Local Movement for Slave Mirrors) / Kok-Keong Chong
  • 1.3.Residual Aberration / Kok-Keong Chong
  • 1.3.1.Methodology / Kok-Keong Chong
  • 1.3.2.Optical Analysis of Residual Aberration / Kok-Keong Chong
  • 1.4.Optimization of Flux Distribution Pattern for Wide Range of Incident Angle / Kok-Keong Chong
  • 1.5.First Prototype of Non-imaging Focusing Heliostat (NIFH) / Kok-Keong Chong
  • 1.5.1.Heliostat Structure / Kok-Keong Chong
  • 1.5.2.Heliostat Arm / Kok-Keong Chong
  • 1.5.3.Pedestal / Kok-Keong Chong
  • 1.5.4.Mirror and Unit Frame / Kok-Keong Chong
  • 1.5.5.Hardware and Software Control System / Kok-Keong Chong
  • 1.5.6.Optical Alignment of Prototype Heliostat / Kok-Keong Chong
  • 1.5.7.High Temperature Solar Furnace System / Kok-Keong Chong
  • 1.6.Second Prototype of Non-imaging Focusing Heliostat (NIFH) / Kok-Keong Chong
  • 1.6.1.Introduction / Kok-Keong Chong
  • 1.6.2.Mechanical Design and Control System of Second Prototype / Kok-Keong Chong
  • 1.6.3.High Temperature Potato Skin Vaporization Experiment / Kok-Keong Chong
  • 1.7.Conclusion / Kok-Keong Chong
  • Acknowledgement / Kok-Keong Chong
  • References / Kok-Keong Chong
  • 2.1.Introduction / Suresh Sagadevan
  • 2.2.Motivations for Solar Energy / Suresh Sagadevan
  • 2.2.1.Importance of Solar Energy / Suresh Sagadevan
  • 2.2.2.Solar Energy and Its Economy / Suresh Sagadevan
  • 2.2.3.Technologies Based on Solar Energy / Suresh Sagadevan
  • 2.2.4.Photovoltaic Systems / Suresh Sagadevan
  • 2.3.Nanostructures and Different Synthesis Techniques / Suresh Sagadevan
  • 2.3.1.Classification of Nanomaterials / Suresh Sagadevan
  • 2.3.2.Synthesis and Processing of Nanomaterials / Suresh Sagadevan
  • 2.4.Nanomaterials for Solar Cells Applications / Suresh Sagadevan
  • 2.4.1.CdTe, CdSe and CdS Thin-Film PV Devices / Suresh Sagadevan
  • 2.4.2.Nanoparticles/Quantum Dot Solar Cells and PV Devices / Suresh Sagadevan
  • 2.4.3.Iron Disulfide Pyrite, CuInS2 and Cu2ZnSnS4 / Suresh Sagadevan
  • 2.4.4.Organic Solar Cells and Nanowire Solar Cells / Suresh Sagadevan
  • 2.4.5.Polycrystalline Thin-Film Solar Cells / Suresh Sagadevan
  • 2.5.Advanced Nanostruutures for Technological Applications / Suresh Sagadevan
  • 2.5.1.Nanocones Used as Inexpensive Solar Cells / Suresh Sagadevan
  • 2.5.2.Core/Shell Nanoparticles towards PV Applications / Suresh Sagadevan
  • 2.5.3.Silicon PV Devices / Suresh Sagadevan
  • 2.5.4.III-V Semiconductors / Suresh Sagadevan
  • 2.6.Theory and Future Trends in Solar Cells / Suresh Sagadevan
  • 2.6.1.Theoretical Formulation of the Solar Cell / Suresh Sagadevan
  • 2.6.2.The Third Generation Solar Cells / Suresh Sagadevan
  • 2.7.Conclusion / Suresh Sagadevan
  • References / Suresh Sagadevan
  • 3.1.Introduction / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.2.Metal Oxide Nanostructures for Photovoltaic Applications / Hyung-Kee Seo / M. Shaheer Akhtar / Sadia Ameen / Hyung Shik Shin
  • 3.3.TiO2Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.3.1.Fabrication of DSSCs with TiO2Nanorods (NRs) Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.3.2.Fabrication of DSSCs with TiO2Nanocomposite Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.3.3.TiO2 Nanocomposite for the Heterostructure Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.ZnO Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.1.Fabrication of DSSCs with ZnO Nanotubes (NTs) Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.2.Fabrication of DSSCs with Nanospikes Decorated ZnO Sheets Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.3.Fabrication of DSSCs with ZnO Nanorods (NRs) and Nanoballs (NBs) Nanomaterial Based Photoanode / Sadia Ameen / M. Shaheer Akhtar / Hyung-Kee Seo / Hyung Shik Shin
  • 3.4.4.Fabrication of DSSCs with Spindle Shaped Sn-Doped ZnO Nanostructures Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.5.Fabrication of DSSCs with Vertically Aligned ZnO Nanorods (NRs) and Graphene Oxide Nanocomposite Based Photoanode / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.6.ZnO Nanocomposit for the Heterostructures Devices / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.4.7.Fabrication of Heterostructure Device with Doped ZnO Nanocomposite / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.Metal Oxide Nanostructures and Nanocomposites for Photocatalytic Application / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.1.ZnO Flower Nanostructures for Photocatalytic Degradation of Crystal Violet (Cv)Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.2.Advanced ZnO-Graphene Oxide Nanohybrid for the Photocatalytic Degradation of Crystal Violet (Cv)Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.3.Effective Nanocomposite of Polyaniline (PANT) and ZnO for the Photocatalytic Degradation of Methylene Blue (MB) Dye / Hyung-Kee Seo / M. Shaheer Akhtar / Sadia Ameen / Hyung Shik Shin
  • 3.8.4.Novel Poly(1-naphthylamine)/Zinc Oxide Nanocomposite for the Photocatalytic-Degradation of Methylene Blue (MB) Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.8.5.Nanocomposites of Poly(1-naphthylamine)/SiO2 and Poly(1-Naphthylamine)/TiO2 for the Photocatalytic Degradation of Methylene Blue (MB) Dye / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.9.Conclusions / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 3.10.Future Directions / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • References / Sadia Ameen / Hyung Shik Shin / Hyung-Kee Seo / M. Shaheer Akhtar
  • 4.1.Introduction / Archana Chandra / Angesh Chandra
  • 4.2.Classification of Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.3.Ion Conduction in Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4.Important Models / Archana Chandra / Angesh Chandra
  • 4.4.1.Models for Crystalline/Polycrystalline Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4.2.Models for Glassy Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4.3.Models for Composite Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.4.4.Models for Polymeric Superionic Solids / Archana Chandra / Angesh Chandra
  • 4.5.Applications / Archana Chandra / Angesh Chandra
  • 4.5.1.Solid-State Batteries / Archana Chandra / Angesh Chandra
  • 4.5.2.Fuel Cells / Archana Chandra / Angesh Chandra
  • 4.5.3.Super Capacitors / Archana Chandra / Angesh Chandra
  • 4.6.Conclusion / Archana Chandra / Angesh Chandra
  • References / Archana Chandra / Angesh Chandra
  • 5.1.Introduction / Michael R. Kessler / Vijay Kumar Thakur
  • 5.2.Dielectric Mechanism / Michael R. Kessler / Vijay Kumar Thakur
  • 5.2.1.Dielectric Permittivity, Loss and Breakdown / Michael R. Kessler / Vijay Kumar Thakur
  • 5.2.2.Polarization / Michael R. Kessler / Vijay Kumar Thakur
  • 5.3.Dielectric Materials / Michael R. Kessler / Vijay Kumar Thakur
  • 5.4.Demand for New Materials: Polymer Composites / Michael R. Kessler / Vijay Kumar Thakur
  • 5.5.Polymer Nanocomposites: Concept and Electrical Properties / Michael R. Kessler / Vijay Kumar Thakur
  • 5.5.1.Polymer Nanocomposites for Dielectric Applications / Michael R. Kessler / Vijay Kumar Thakur
  • 5.6.Conclusion and Future Perspectives / Michael R. Kessler / Vijay Kumar Thakur
  • References / Vijay Kumar Thakur / Michael R. Kessler
  • 6.1.Introduction / S.W. Anwane
  • 6.2.Ionic Solids / S.W. Anwane
  • 6.2.1.Bonds in Ionic Solids / S.W. Anwane
  • 6.2.2.Structure of Ionic Solids / S.W. Anwane
  • 6.3.Classification of Solid Electrolytes / S.W. Anwane
  • 6.4.Criteria for High Ionic Conductivity and Mobility / S.W. Anwane
  • 6.5.Electrical Characterization of Solid Electrolyte / S.W. Anwane
  • 6.5.1.DC Polarization / S.W. Anwane
  • 6.5.2.Impedance Spectroscopy / S.W. Anwane
  • 6.6.Ionic Conductivity and Temperature / S.W. Anwane
  • 6.7.Concentration-Dependent Conductivity / S.W. Anwane
  • 6.8.Ionic Conductivity in Composite SE / S.W. Anwane
  • 6.9.Thermodynamics of Electrochemical System / S.W. Anwane
  • 6.10.Applications / S.W. Anwane
  • 6.10.1.Solid-State Batteries / S.W. Anwane
  • 6.10.2.Sensors / S.W. Anwane
  • 6.10.3.SO2 Sensor Kinetics and Thermodynamics / S.W. Anwane
  • 6.12.Conclusion / S.W. Anwane
  • References / S.W. Anwane
  • 7.1.Introduction / Surender Duhan / Vijay Tomer
  • 7.1.1.Silicon Era / Surender Duhan / Vijay Tomer
  • 7.1.2.Moore's Law / Surender Duhan / Vijay Tomer
  • 7.2.Limitations of Silicon-Based Technology / Surender Duhan / Vijay Tomer
  • 7.2.1.Speed, Density and Design Complexity / Surender Duhan / Vijay Tomer
  • 7.2.2.Power Consumption and Heat Dissipation / Surender Duhan / Vijay Tomer
  • 7.2.3.Cost Concern / Surender Duhan / Vijay Tomer
  • 7.3.Need for Carbon-Based Electronics Technology / Surender Duhan / Vijay Tomer
  • 7.4.Carbon Family / Surender Duhan / Vijay Tomer
  • 7.4.1.Carbon Nanotube / Surender Duhan / Vijay Tomer
  • 7.4.2.Graphene / Surender Duhan / Vijay Tomer
  • 7.5.Electronic Structure of Graphene and CNT / Surender Duhan / Vijay Tomer
  • 7.6.Synthesis of CNTs / Surender Duhan / Vijay Tomer
  • 7.6.1.Arc Discharge Method / Surender Duhan / Vijay Tomer
  • 7.6.2.Pyrolysis of Hydrocarbons / Surender Duhan / Vijay Tomer
  • 7.6.3.Laser Vaporization / Surender Duhan / Vijay Tomer
  • 7.6.4.Electrolysis / Surender Duhan / Vijay Tomer
  • 7.6.5.Solar Vaporization / Vijay Tomer / Surender Duhan
  • 7.7.Carbon Nanotube Devices / Surender Duhan / Vijay Tomer
  • 7.7.1.Nanotube-Based FET Transistors CNTFET / Surender Duhan / Vijay Tomer
  • 7.7.2.CNT Interconnect / Surender Duhan / Vijay Tomer
  • 7.7.3.Carbon Nanotube Sensor of Polar Molecules / Surender Duhan / Vijay Tomer
  • 7.7.4.Carbon Nanotube Crossbar Arrays for Random Access Memory / Surender Duhan / Vijay Tomer
  • 7.8.Advantages of CNT Based Devices / Surender Duhan / Vijay Tomer
  • 7.8.1.Ballistic Transport / Surender Duhan / Vijay Tomer
  • 7.8.2.Flexible Device / Surender Duhan / Vijay Tomer
  • 7.8.3.Low Power Dissipation / Surender Duhan / Vijay Tomer
  • 7.8.4.Low Cost / Surender Duhan / Vijay Tomer
  • 7.9.Issues with Carbon-Based Electronics / Surender Duhan / Vijay Tomer
  • 7.10.Conclusion / Surender Duhan / Vijay Tomer
  • References / Surender Duhan / Vijay Tomer
  • 8.1.Introduction / Pooja B and G. Sharma
  • 8.2.Computational Details / Pooja B and G. Sharma
  • 8.3.Results and Discussion / Pooja B and G. Sharma
  • 8.3.1.Phase Transition and Structural Parameters / Pooja B and G. Sharma
  • 8.3.2.Pressure Dependent Electronic Properties / Pooja B and G. Sharma
  • 8.3.3.Pressure-Dependent Dielectric Constant / Pooja B and G. Sharma
  • 8.4.Conclusions / Pooja B and G. Sharma
  • Acknowledgements / Pooja B and G. Sharma
  • References / Pooja B and G. Sharma
  • 9.1.Introduction / Jihyun Kim / Lu Liu / Fan Ren / Alexander Y. Polyakov / Richard Deist / S.J. Pearton
  • 9.2.Fundamental Studies of Radiation Defects in GaN and Related Materials / Fan Ren / Lu Liu / Jihyun Kim / Richard Deist / S.J. Pearton / Alexander Y. Polyakov
  • 9.2.1.Threshold Displacement Energy: Theory and Experiment / S.J. Pearton / Richard Deist / Alexander Y. Polyakov / Fan Ren / Lu Liu / Jihyun Kim
  • 9.2.2.Radiation Defects in GaN: Defects Levels, Effects on Charge Carriers Concentration, Mobility, Lifetime of Charge Carriers, Thermal Stability of Defects / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.3.Radiation Effects in Other III-Nitrides / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.4.Radiation Effects in GaN Schottky Diodes, in AlGaN/GaN and GaN/InGaN Heterojunctions and Quantum Wells / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.5.Radiation Effects in GaN-Based Devices / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.6.Prospects of Radiation Technology for GaN / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 9.7.Summary and Conclusions / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • Acknowledgments / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • References / S.J. Pearton / Richard Deist / Jihyun Kim / Fan Ren / Lu Liu / Alexander Y. Polyakov
  • 10.1.Introduction / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.1.1.Molecular Packing in Liquid Crystalline Phases / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.2.Theories of Antiferroelectricity in Liquid Crystals / Roman Dabrowski / Manoj Bhushan Pandey / Ravindra Dhar
  • 10.3.Molecular Structure Design/Synthesis of AFLC Materials / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.4.Macroscopic Characterization and Physical Properties of AFLCs / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.4.1.Experimental Techniques / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.4.2.Dielectric Parameters of AFLCs / Manoj Bhushan Pandey / Roman Dabrowski / Ravindra Dhar
  • 10.4.3.Switching and Electro-Optic Parameters / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 10.5.Conclusion and Future Scope / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • Acknowledgements / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • References / Manoj Bhushan Pandey / Ravindra Dhar / Roman Dabrowski
  • 11.1.Introduction / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.1.1.What is Fuel Cell? / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.2.PEEK Overview / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.2.1.Applications of PEEK / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.2.2.Why PEEK is Used as Fuel Cell Membrane / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.3.PEEK as Fuel Cell Membrane / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.4.Modified PEEK as Fuel Cell Membrane / Nibedita Nath / Anita Routaray / Alekha Kumar Sutar / Bikash Mohanty / Tungabidya Maharana / Yuvraj Singh Negi
  • 11.4.1.Sulphonated PEEK as Fuel Cell Membrane / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.5.Evaluation of Cell Performance / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.6.Market Size / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • 11.7.Conclusion and Future Prospects / Tungabidya Maharana / Alekha Kumar Sutar / Bikash Mohanty / Anita Routaray / Yuvraj Singh Negi / Nibedita Nath
  • Acknowledgement / Tungabidya Maharana / Alekha Kumar Sutar / Nibedita Nath / Anita Routaray / Yuvraj Singh Negi / Bikash Mohanty
  • References / Alekha Kumar Sutar / Tungabidya Maharana / Nibedita Nath / Anita Routaray / Yuvraj Singh Negi / Bikash Mohanty
  • 12.1.Introduction / Roshani Singh / K.N. Shinde
  • 12.2.Some Well-Known Vanadate Phosphors / K.N. Shinde / Roshani Singh
  • 12.3.Our Approach / K.N. Shinde / Roshani Singh
  • 12.4.Experimental Details / Roshani Singh / K.N. Shinde
  • 12.5.Results and Discussion of M3-3x/2(VO4)2:xEu(0.01 < or = x < or = 0.09 for M = Ca and 0 < or = x < or = 0.3 for M = Sr,Ba) Phosphors / Roshani Singh / K.N. Shinde
  • 12.5.1.X-ray Diffraction Pattern of M3-3x/2(VO4)2:xEu Phosphor / K.N. Shinde / Roshani Singh
  • 12.5.2.Surface Morphology of M3-3x/2(VO4)2:xEu Phosphor / Roshani Singh / K.N. Shinde
  • 12.5.3.Photoluminescence Properties of M3-3x/2(VO4)2:xEu Phosphor / Roshani Singh / K.N. Shinde
  • 12.6.Effect of Annealing Temperature on M3-3x/2(VO4)2:xEu (x = 0.05 for M = Ca, x = 0.1 for M = Sr and x = 0.3 for M = Ba) Phosphors / Roshani Singh / K.N. Shinde
  • 12.6.1.X-ray Diffraction Pattern of M3-3x/2(VO4)2:xEu phosphor / Roshani Singh / K.N. Shinde
  • 12.6.2.Surface Morphology of M3-3x/2(VO4)2:xEu phosphor / K.N. Shinde / Roshani Singh
  • 12.6.3.Photoluminescence Properties of M3-3x/2(VO4)2:xEu phosphor / K.N. Shinde / Roshani Singh
  • 12.7.Conclusions / K.N. Shinde / Roshani Singh
  • References / Roshani Singh / K.N. Shinde
  • 13.1.Introduction / Prakash Chandra Mondal
  • 13.2.Molecular Logic Gate on 3D Substrates / Prakash Chandra Mondal
  • 13.3.Molecular Logic Gates and Circuits on 2D Substrates / Prakash Chandra Mondal
  • 13.3.1.Monolayer-Based System / Prakash Chandra Mondal
  • 13.4.Combinatorial and Sequential Logic Gates and Circuits using Os-polypyridyl Complex on SiOx Substrates / Prakash Chandra Mondal
  • 13.5.Multiple Redox States and Logic Devices / Prakash Chandra Mondal
  • 13.6.Concluding Remarks / Prakash Chandra Mondal
  • Acknowledgements / Prakash Chandra Mondal
  • References / Prakash Chandra Mondal
  • 14.1.Introduction / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.2.Applications of Metal Nanoparticles / Kamlesh Kumari / Gopal K. Mehrotra / Prashant Singh
  • 14.3.Shape of Particles / Prashant Singh / Gopal K. Mehrotra / Kamlesh Kumari
  • 14.4.Aggregation of Particles / Prashant Singh / Kamlesh Kumari / Gopal K. Mehrotra
  • 14.5.Synthesis of Metal Nanoparticles / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.6.Stability against Oxidation / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.7.Stabilization of Metal Nanoparticles in Ionic Liquid / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.8.Applications of Metal NPs as Potent Catalyst in Organic Synthesis / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 14.8.Conclusion / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • References / Kamlesh Kumari / Prashant Singh / Gopal K. Mehrotra
  • 15.1.Introduction / Parthiv M. Trivedi / C.K. Modi
  • 15.2.Types of Zeolites / Parthiv M. Trivedi / C.K. Modi
  • 15.3.Methodology / Parthiv M. Trivedi / C.K. Modi
  • 15.4.Characterization Techniques / C.K. Modi / Parthiv M. Trivedi
  • 15.5.Exploration of Zeolite-Y Enslaved Nanohybrid Materials / C.K. Modi / Parthiv M. Trivedi
  • 15.5.1.Catalytic Liquid-Phase Hydroxylation of Phenol / C.K. Modi / Parthiv M. Trivedi
  • 15.5.2.Catalytic Liquid-Phase Oxidation of Cyclohexane / C.K. Modi / Parthiv M. Trivedi
  • 15.6.Conclusions / Parthiv M. Trivedi / C.K. Modi
  • References / Parthiv M. Trivedi / C.K. Modi.