Positioning in wireless communications systems /
Positioning in Wireless Communications Systems explains the principal differences and similarities of wireless communications systems and navigation systems. It discusses scenarios which are critical for dedicated navigation systems such as the Global Positioning System (GPS) and which motivate the...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Hoboken :
Wiley,
2014.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Cover; Title Page; Copyright; Contents; About the Authors; Preface; Acknowledgements; List of Abbreviations; Chapter 1 Introduction; 1.1 Ground Based Positioning Systems; 1.1.1 DECCA; 1.1.2 LORAN; 1.1.3 OMEGA; 1.2 Satellite Based Positioning Systems; 1.2.1 GPS; 1.2.2 GLONASS; 1.2.3 Galileo; 1.3 GNSS Augmentation Systems; 1.3.1 Differential GNSS-DGNSS; 1.3.2 Wide Area Augmentation System-WAAS; 1.3.3 European Geostationary Navigation Overlay Service-EGNOS; 1.3.4 Multi-Functional Satellite Augmentation System-MSAS; 1.3.5 GPS Aided Geo Augmented Navigation-GAGAN; 1.4 Critical Environments.
- Chapter 2 Positioning Principles2.1 Propagation Time; 2.1.1 Time of Arrival-TOA; 2.1.2 Time Difference of Arrival-TDOA; 2.1.3 Round-Trip Time of Arrival-RTTOA; 2.1.4 Comparison of Circular and Hyperbolic Positioning; 2.2 Angle of Arrival-AOA; 2.2.1 Two-Dimensional; 2.2.2 Three-Dimensional; 2.2.3 AOA in the Uplink; 2.2.4 The Problem of Non-Line-of-Sight Propagation; 2.3 Fingerprinting; 2.3.1 Cell-ID; 2.3.2 Received Signal Strength-RSS; 2.3.3 Power Delay Profile-PDP; Chapter 3 Measurements and Parameter Extraction; 3.1 Parameter Estimation; 3.1.1 The Estimation Problem.
- 3.1.2 Cramé-Rao Lower Bound-CRLB3.2 Propagation Time; 3.2.1 Cramé-Rao Lower Bound for Time Estimation; 3.2.2 Timing Estimation in White Gaussian Noise; 3.3 Angle of Arrival-AOA; 3.3.1 Uniform Linear Array Antenna; 3.3.2 AOA Estimation in Additive White Gaussian Noise; 3.3.3 Cramé-Rao Lower Bound for AOA Estimation; Chapter 4 Position Estimation; 4.1 Triangulation; 4.1.1 Triangulation with Ideal Measurements; 4.1.2 Triangulation with Erroneous Measurements; 4.2 Trilateration; 4.2.1 Trilateration with Ideal Measurements; 4.2.2 Trilateration with Erroneous Measurements; 4.3 Multilateration.
- 4.3.1 Multilateration with Ideal Measurements4.3.2 Multilateration with Erroneous Measurements; 4.4 Fingerprinting; 4.5 Performance Bounds and Measures; 4.5.1 Root Mean Square Error-RMSE; 4.5.2 Cumulative Distribution Function-CDF; 4.5.3 Circular Error Probability-CEP; 4.5.4 Positioning Cramé-Rao Lower Bound-CRLB; 4.5.5 Dilution of Precision-DOP; 4.5.6 Complexity; Chapter 5 Position Tracking; 5.1 Kalman Filter; 5.2 Extended Kalman Filter; 5.3 Particle Filter; 5.4 Further Approaches; 5.4.1 Grid-Based Methods; 5.4.2 Second Order Extended Kalman Filter; 5.4.3 Unscented Kalman Filter.
- 5.4.4 Gaussian Mixture Filter5.4.5 Rao-Blackwellization; 5.4.6 Map Matching; Chapter 6 Scenarios and Models; 6.1 Scenarios; 6.1.1 Rural Environment; 6.1.2 Urban Environment; 6.1.3 Transition from Outdoor to Indoor; 6.1.4 Indoor Environment; 6.2 Channel Characterization; 6.2.1 Channel Measurements; 6.2.2 Ray Tracing; 6.3 Channel Models; 6.4 Mobility Models; Chapter 7 Advanced Positioning Algorithms; 7.1 Hybrid Data Fusion; 7.1.1 General Hybrid Data Fusion Aspects; 7.1.2 Extension of Derived Algorithms to More Sources; 7.1.3 Simulation Results; 7.2 Cooperative Positioning.