An introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications /

Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering readers the opportunity to grasp the key factors that make LTE the hot topic amongst vendors and operators across...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cox, Christopher (Christopher Ian), 1965-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdon ; Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1.1.Architectural Review of UMTS and GSM
  • 1.1.1.High-Level Architecture
  • 1.1.2.Architecture of the Radio Access Network
  • 1.1.3.Architecture of the Core Network
  • 1.1.4.Communication Protocols
  • 1.2.History of Mobile Telecommunication Systems
  • 1.2.1.From 1G to 3G
  • 1.2.2.Third Generation Systems
  • 1.3.The Need for LTE
  • 1.3.1.The Growth of Mobile Data
  • 1.3.2.Capacity of a Mobile Telecommunication System
  • 1.3.3.Increasing the System Capacity
  • 1.3.4.Additional Motivations
  • 1.4.From UMTS to LTE
  • 1.4.1.High-Level Architecture of LTE
  • 1.4.2.Long-Term Evolution
  • 1.4.3.System Architecture Evolution
  • 1.4.4.LTE Voice Calls
  • 1.4.5.The Growth bf LTE
  • 1.5.From LTE to LTE-Advanced
  • 1.5.1.The ITU Requirements for 4G
  • 1.5.2.Requirements of LTE-Advanced
  • 1.5.3.4G Communication Systems
  • 1.5.4.The Meaning of 4G
  • 1.6.The 3GPP Specifications for LTE
  • References
  • 2.1.High-Level Architecture of LTE
  • 2.2.User Equipment
  • 2.2.1.Architecture of the UE
  • 2.2.2.UE Capabilities
  • 2.3.Evolved UMTS Terrestrial Radio Access Network
  • 2.3.1.Architecture of the E-UTRAN
  • 2.3.2.Transport Network
  • 2.3.3.Small Cells and the Home eNB
  • 2.4.Evolved Packet Core
  • 2.4.1.Architecture of the EPC
  • 2.4.2.Roaming Architecture
  • 2.4.3.Network Areas
  • 2.4.4.Numbering, Addressing and Identification
  • 2.5.Communication Protocols
  • 2.5.1.Protocol Model
  • 2.5.2.Air Interface Transport Protocols
  • 2.5.3.Fixed Network Transport Protocols
  • 2.5.4.User Plane Protocols
  • 2.5.5.Signalling Protocols
  • 2.6.Example Signalling Flows
  • 2.6.1.Access Stratum Signalling
  • 2.6.2.Non-Access Stratum Signalling
  • 2.7.Bearer Management
  • 2.7.1.The EPS Bearer
  • 2.7.2.Default and Dedicated Bearers
  • 2.7.3.Bearer Implementation Using GTP
  • 2.7.4.Bearer Implementation Using GRE and PMIP
  • 2.7.5.Signalling Radio Bearers
  • 2.8.State Diagrams
  • 2.8.1.EPS Mobility Management
  • 2.8.2.EPS Connection Management
  • 2.8.3.Radio Resource Control
  • 2.9.Spectrum Allocation
  • References
  • 3.1.Radio Transmission and Reception
  • 3.1.1.Carrier Signal
  • 3.1.2.Modulation Techniques
  • 3.1.3.The Modulation Process
  • 3.1.4.The Demodulation Process
  • 3.1.5.Channel Estimation
  • 3.1.6.Bandwidth of the Modulated Signal
  • 3.2.Radio Transmission in a Mobile Cellular Network
  • 3.2.1.Multiple Access Techniques
  • 3.2.2.FDD and TDD Modes
  • 3.3.Impairments to the Received Signal
  • 3.3.1.Propagation Loss
  • 3.3.2.Noise and Interference
  • 3.3.3.Multipath and Fading
  • 3.3.4.Inter-symbol Interference
  • 3.4.Error Management
  • 3.4.1.Forward Error Correction
  • 3.4.2.Automatic Repeat Request
  • 3.4.3.Hybrid ARQ
  • References
  • 4.1.Principles of OFDMA
  • 4.1.1.Sub-carriers
  • 4.1.2.The OFDM Transmitter
  • 4.1.3.The OFDM Receiver
  • 4.1.4.The Fast Fourier Transform
  • 4.1.5.Block Diagram of OFDMA
  • 4.1.6.Details of the Fourier Transform
  • 4.2.Benefits and Additional Features of OFDMA
  • 4.2.1.Orthogonal Sub-carriers
  • 4.2.2.Choice of Sub-carrier Spacing
  • 4.2.3.Frequency-Specific Scheduling
  • 4.2.4.Reduction of Inter-symbol Interference
  • 4.2.5.Cyclic Prefix Insertion
  • 4.2.6.Choice of Symbol Duration
  • 4.2.7.Fractional Frequency Re-use
  • 4.3.Single Carrier Frequency Division Multiple Access
  • 4.3.1.Power Variations From OFDMA
  • 4.3.2.Block Diagram of SC-FDMA
  • References
  • 5.1.Diversity Processing
  • 5.1.1.Receive Diversity
  • 5.1.2.Closed Loop Transmit Diversity
  • 5.1.3.Open Loop Transmit Diversity
  • 5.2.Spatial Multiplexing
  • 5.2.1.Principles of Operation
  • 5.2.2.Open Loop Spatial Multiplexing
  • 5.2.3.Closed Loop Spatial Multiplexing
  • 5.2.4.Matrix Representation
  • 5.2.5.Implementation Issues
  • 5.2.6.Multiple User MIMO
  • 5.3.Beamforming
  • 5.3.1.Principles of Operation
  • 5.3.2.Beam Steering
  • 5.3.3.Downlink Multiple User MIMO Revisited
  • References
  • 6.1.Air Interface Protocol Stack
  • 6.2.Logical, Transport and Physical Channels
  • 6.2.1.Logical Channels
  • 6.2.2.Transport Channels
  • 6.2.3.Physical Data Channels
  • 6.2.4.Control Information
  • 6.2.5.Physical Control Channels
  • 6.2.6.Physical Signals
  • 6.2.7.Information Flows
  • 6.3.The Resource Grid
  • 6.3.1.Slot Structure
  • 6.3.2.Frame Structure
  • 6.3.3.Uplink Timing Advance
  • 6.3.4.Resource Grid Structure
  • 6.3.5.Bandwidth Options
  • 6.4.Multiple Antenna Transmission
  • 6.4.1.Downlink Antenna Ports
  • 6.4.2.Downlink Transmission Modes
  • 6.5.Resource Element Mapping
  • 6.5.1.Downlink Resource Element Mapping
  • 6.5.2.Uplink Resource Element Mapping
  • References
  • 7.1.Acquisition Procedure
  • 7.2.Synchronization Signals
  • 7.2.1.Physical Cell Identity
  • 7.2.2.Primary Synchronization Signal
  • 7.2.3.Secondary Synchronization Signal
  • 7.3.Downlink Reference Signals
  • 7.4.Physical Broadcast Channel
  • 7.5.Physical Control Format Indicator Channel
  • 7.6.System Information
  • 7.6.1.Organization of the System Information
  • 7.6.2.Transmission and Reception of the System Information
  • 7.7.Procedures after Acquisition
  • References
  • 8.1.Data Transmission Procedures
  • 8.1.1.Downlink Transmission and Reception
  • 8.1.2.Uplink Transmission and Reception
  • 8.1.3.Semi Persistent Scheduling
  • 8.2.Transmission of Scheduling Messages on the PDCCH
  • 8.2.1.Downlink Control Information
  • 8.2.2.Resource Allocation
  • 8.2.3.Example: DCI Format 1
  • 8.2.4.Radio Network Temporary Identifiers
  • 8.2.5.Transmission and Reception of the PDCCH
  • 8.3.Data Transmission on the PDSCH and PUSCH
  • 8.3.1.Transport Channel Processing
  • 8.3.2.Physical Channel Processing
  • 8.4.Transmission of Hybrid ARQ Indicators on the PHICH
  • 8.4.1.Introduction
  • 8.4.2.Resource Element Mapping of the PHICH
  • 8.4.3.Physical Channel Processing of the PHICH
  • 8.5.Uplink Control Information
  • 8.5.1.Hybrid ARQ Acknowledgements
  • 8.5.2.Channel Quality Indicator
  • 8.5.3.Rank Indication
  • 8.5.4.Precoding Matrix Indicator
  • 8.5.5.Channel State Reporting Mechanisms
  • 8.5.6.Scheduling Requests
  • 8.6.Transmission of Uplink Control Information on the PUCCH
  • 8.6.1.PUCCH Formats
  • 8.6.2.PUCCH Resources
  • 8.6.3.Physical Channel Processing of the PUCCH
  • 8.7.Uplink Reference Signals
  • 8.7.1.Demodulation Reference Signal
  • 8.7.2.Sounding Reference Signal
  • 8.8.Power Control
  • 8.8.1.Uplink Power Calculation
  • 8.8.2.Uplink Power Control Commands
  • 8.8.3.Downlink Power Control
  • 8.9.Discontinuous Reception
  • 8.9.1.Discontinuous Reception and Paging in RRC_IDLE
  • 8.9.2.Discontinuous Reception in RRC_CONNECTED
  • References
  • 9.1.Transmission of Random Access Preambles on the PRACH
  • 9.1.1.Resource Element Mapping
  • 9.1.2.Preamble Sequence Generation
  • 9.1.3.Signal Transmission
  • 9.2.Non-Contention-Based Procedure
  • 9.3.Contention-Based Procedure
  • References
  • 10.1.Medium Access Control Protocol
  • 10.1.1.Protocol Architecture
  • 10.1.2.Timing Advance Commands
  • 10.1.3.Buffer Status Reporting
  • 10.1.4.Power Headroom Reporting
  • 10.1.5.Multiplexing and De-multiplexing
  • 10.1.6.Logical Channel Prioritization
  • 10.1.7.Scheduling of Transmissions on the Air Interface
  • 10.2.Radio Link Control Protocol
  • 10.2.1.Protocol Architecture
  • 10.2.2.Transparent Mode
  • 10.2.3.Unacknowledged Mode
  • 10.2.4.Acknowledged Mode
  • 10.3.Packet Data Convergence Protocol
  • 10.3.1.Protocol Architecture
  • 10.3.2.Header Compression
  • 10.3.3.Prevention of Packet Loss during Handover
  • References
  • 11.1.Power-On Sequence
  • 11.2.Network and Cell Selection
  • 11.2.1.Network Selection
  • 11.2.2.Closed Subscriber Group Selection
  • 11.2.3.Cell Selection
  • 11.3.RRC Connection Establishment
  • 11.3.1.Basic Procedure
  • 11.3.2.Relationship with Other Procedures
  • 11.4.Attach Procedure
  • 11.4.1.IP Address-Allocation
  • 11.4.2.Overview of the Attach Procedure
  • 11.4.3.Attach Request
  • 11.4.4.Identification and Security Procedures
  • 11.4.5.Location Update
  • 11.4.6.Default Bearer Creation
  • 11.4.7.Attach Accept
  • 11.4.8.Default Bearer Update
  • 11.5.Detach Procedure
  • References
  • 12.1.Network Access Security
  • 12.1.1.Security Architecture
  • 12.1.2.Key Hierarchy
  • 12.1.3.Authentication and Key Agreement
  • 12.1.4.Security Activation
  • 12.1.5.Ciphering
  • 12.1.6.Integrity Protection
  • 12.2.Network Domain Security
  • 12.2.1.Security Protocols
  • 12.2.2.Security in the Evolved Packet Core
  • 12.2.3.Security in the Radio Access Network
  • References
  • 13.1.Policy and Charging Control
  • 13.1.1.Quality of Service Parameters
  • 13.1.2.Service Data Flows
  • 13.1.3.Charging Parameters
  • 13.1.4.Policy and Charging Control Rules
  • 13.2.Policy and Charging Control Architecture
  • 13.2.1.Basic PCC Architecture
  • 13.2.2.Local Breakout Architecture
  • 13.2.3.Architecture Using a PMIP Based S5/S8
  • 13.2.4.Software Protocols
  • 13.3.Session Management Procedures
  • 13.3.1.IP-CAN Session Establishment
  • 13.3.2.Mobile Originated SDF Establishment
  • 13.3.3.Server Originated SDF Establishment
  • 13.3.4.Dedicated Bearer Establishment
  • 13.3.5.PDN Connectivity Establishment
  • 13.3.6.Other Session Management Procedures
  • 13.4.Data Transport in the Evolved Packet Core
  • 13.4.1.Packet Handling at the PDN Gateway
  • 13.4.2.Data Transport Using GTP
  • 13.4.3.Differentiated Services
  • 13.4.4.Multiprotocol Label Switching
  • 13.4.5.Data Transport Using GRE and PMIP
  • 13.5.Charging and Billing
  • 13.5.1.High Level Architecture
  • 13.5.2.Offline Charging
  • 13.5.3.Online Charging
  • References
  • 14.1.Transitions between Mobility Management States
  • 14.1.1.S1 Release Procedure
  • 14.1.2.Paging Procedure
  • 14.1.3.Service Request Procedure
  • 14.2.Cell Reselection in RRC_IDLE
  • 14.2.1.Objectives
  • 14.2.2.Measurement Triggering on the Same LTE Frequency
  • 14.2.3.Cell Reselection to the Same LTE Frequency
  • 14.2.4.Measurement Triggering on a Different LTE Frequency
  • 14.2.5.Cell Reselection to a Different LTE Frequency
  • 14.2.6.Fast Moving Mobiles
  • 14.2.7.Tracking Area Update Procedure
  • 14.2.8.Network Reselection
  • 14.3.Measurements in RRC_CONNECTED
  • 14.3.1.Objectives
  • 14.3.2.Measurement Procedure
  • 14.3.3.Measurement Reporting
  • 14.3.4.Measurement Gaps
  • 14.4.Handover in RRC_CONNECTED
  • 14.4.1.X2 Based Handover Procedure
  • 14.4.2.Handover Variations
  • References
  • 15.1.System Architecture
  • 15.1.1.Architecture of the 2G/3G Packet Switched Domain
  • 15.1.2.S3/S4-Based Inter-operation Architecture
  • 15.1.3.Gn/Gp-Based Inter-operation Architecture
  • 15.2.Power-On Procedures
  • 15.3.Mobility Management in RRC_IDLE
  • 15.3.1.Cell Reselection
  • 15.3.2.Routing Area Update Procedure
  • 15.3.3.Idle Mode Signalling Reduction
  • 15.4.Mobility Management in RRC_CONNECTED
  • 15.4.1.RRC Connection Release with Redirection
  • 15.4.2.Measurement Procedures
  • 15.4.3.Optimized Handover
  • References
  • 16.1.Generic System Architecture
  • 16.1.1.Network-Based Mobility Architecture
  • 16.1.2.Host-Based Mobility Architecture
  • 16.1.3.Access Network Discovery and Selection Function
  • 16.2.Generic Signalling Procedures
  • 16.2.1.Overview of the Attach Procedure
  • 16.2.2.Authentication and Key Agreement
  • 16.2.3.PDN Connectivity Establishment
  • 16.2.4.Radio Access Network Reselection
  • 16.3.Inter-Operation with cdma2000 HRPD
  • 16.3.1.System Architecture
  • 16.3.2.Preregistration with cdma2000
  • 16.3.3.Cell Reselection in RRC_IDLE
  • 16.3.4.Measurements and Handover in RRC_CONNECTED
  • References
  • 17.1.Self-Configuration of an eNB
  • 17.1.1.Automatic Configuration of the Physical Cell Identity
  • 17.1.2.Automatic Neighbour Relations
  • 17.1.3.Random Access Channel Optimization
  • 17.2.Inter-Cell Interference Coordination
  • 17.3.Mobility Management
  • 17.3.1.Mobility Load Balancing
  • 17.3.2.Mobility Robustness Optimization
  • 17.3.3.Energy Saving
  • 17.4.Radio Access Network Information Management
  • 17.4.1.Introduction
  • 17.4.2.Transfer of System Information
  • 17.4.3.Transfer of Self-Optimization Data
  • 17.5.Drive Test Minimization
  • References
  • 18.1.Multimedia Broadcast/Multicast Service
  • 18.1.1.Introduction
  • 18.1.2.Multicast/Broadcast over a Single Frequency Network
  • 18.1.3.Implementation of MBSFN in LTE
  • 18.1.4.Architecture of MBMS
  • 18.1.5.Operation of MBMS
  • 18.2.Location Services
  • 18.2.1.Introduction
  • 18.2.2.Positioning Techniques
  • 18.2.3.Location Service Architecture
  • 18.2.4.Location Service Procedures
  • 18.3.Other Enhancements in Release 9
  • 18.3.1.Dual Layer Beamforming
  • 18.3.2.Commercial Mobile Alert System
  • References
  • 19.1.Carrier Aggregation
  • 19.1.1.Principles of Operation
  • 19.1.2.UE Capabilities
  • 19.1.3.Scheduling
  • 19.1.4.Data Transmission and Reception
  • 19.1.5.Uplink and Downlink Feedback
  • 19.1.6.Other Physical Layer and MAC Procedures
  • 19.1.7.RRC Procedures
  • 19.2.Enhanced Downlink MIMO
  • 19.2.1.Objectives
  • 19.2.2.Downlink Reference Signals
  • 19.2.3.Downlink Transmission and Feedback
  • 19.3.Enhanced Uplink MIMO
  • 19.3.1.Objectives
  • 19.3.2.Implementation
  • 19.4.Relays
  • 19.4.1.Principles of Operation
  • 19.4.2.Relaying Architecture
  • 19.4.3.Enhancements to the Air Interface
  • 19.5.Heterogeneous Networks
  • 19.5.1.Introduction
  • 19.5.2.Enhanced Inter-Cell Interference Coordination
  • 19.5.3.Enhancements to Self-Optimizing Networks
  • 19.6.Traffic Offload Techniques
  • 19.6.1.Local IP Access
  • 19.6.2.Selective IP Traffic Offload
  • 19.6.3.Multi-Access PDN Connectivity
  • 19.6.4.IP Flow Mobility
  • 19.7.Overload Control for Machine-Type Communications
  • References
  • 20.1.Coordinated Multipoint Transmission and Reception
  • 20.1.1.Objectives
  • 20.1.2.Scenarios
  • 20.1.3.CoMP Techniques
  • 20.1.4.Standardization
  • 20.1.5.Performance
  • 20.2.Enhanced Physical Downlink Control Channel
  • 20.3.Interference Avoidance for in Device Coexistence
  • 20.4.Machine-Type Communications
  • 20.4.1.Device Triggering
  • 20.4.2.Numbering, Addressing and Identification
  • 20.5.Mobile Data Applications
  • 20.6.New Features in Release 12
  • 20.6.1.Proximity Services and Device to Device Communications
  • 20.6.2.Dynamic Adaptation of the TDD Configuration
  • 20.6.3.Enhancements for Machine-Type Communications and Mobile Data
  • 20.6.4.Traffic Offloading Enhancements
  • 20.7.Release 12 Studies
  • 20.7.1.Enhancements to Small Cells and Heterogeneous Networks
  • 20.7.2.Elevation Beamforming and Full Dimension MIMO
  • References
  • 21.1.Delivery of Voice and Text Messages over LTE
  • 21.1.1.The Market for Voice and SMS
  • 21.1.2.Third Party Voice over IP
  • 21.1.3.The IP Multimedia Subsystem
  • 21.1.4.VoLGA
  • 21.1.5.Dual Radio Devices
  • 21.1.6.Circuit Switched Fallback
  • 21.2.System Architecture
  • 21.2.1.Architecture of the 2G/3G Circuit Switched Domain
  • 21.2.2.Circuit Switched Fallback Architecture
  • 21.3.Attach Procedure
  • 21.3.1.Combined EPS/IMSI Attach Procedure
  • 21.3.2.Voice Domain Preference and UE Usage Setting
  • 21.4.Mobility Management
  • 21.4.1.Combined Tracking Area/Location Area Update Procedure
  • 21.4.2.Alignment of Tracking Areas and Location Areas
  • 21.4.3.Cell Reselection to UMTS or GSM
  • 21.5.Call Setup
  • 21.5.1.Mobile-Originated Call Setup using RRC Connection Release
  • 21.5.2.Mobile Originated Call Setup using Handover
  • 21.5.3.Signalling Messages in the Circuit Switched Domain
  • 21.5.4.Mobile-Terminated Call Setup
  • 21.5.5.Returning to LTE
  • 21.6.SMS over SGs
  • 21.6.1.System Architecture
  • 21.6.2.SMS Delivery
  • 21.7.Circuit Switched Fallback to cdma2000 1xRTT
  • 21.8.Performance of Circuit Switched Fallback
  • References
  • 22.1.Introduction
  • 22.1.1.The IP Multimedia Subsystem
  • 22.1.2.VoLTE
  • 22.1.3.Rich Communication Services
  • 22.2.Hardware Architecture of the IMS
  • 22.2.1.High-Level Architecture
  • 22.2.2.Call Session Control Functions
  • 22.2.3.Application Servers
  • 22.2.4.Home Subscriber Server
  • 22.2.5.User Equipment
  • 22.2.6.Relationship with LTE
  • 22.2.7.Border Control Functions
  • 22.2.8.Media Gateway Functions
  • 22.2.9.Multimedia Resource Functions
  • 22.2.10.Security Architecture
  • 22.2.11.Charging Architecture
  • 22.3.Signalling Protocols
  • 22.3.1.Session Initiation Protocol
  • 22.3.2.Session Description Protocol
  • 22.3.3.Other Signalling Protocols
  • 22.4.Service Provision in the IMS
  • 22.4.1.Service Profiles
  • 22.4.2.Media Feature-Tags
  • 22.4.3.The Multimedia Telephony Service for IMS
  • 22.5.VoLTE Registration Procedure
  • 22.5.1.Introduction
  • 22.5.2.LTE Procedures
  • 22.5.3.Contents of the REGISTER Request
  • 22.5.4.IMS Registration Procedure
  • 22.5.5.Routing of SIP Requests and Responses
  • 22.5.6.Third-Party Registration with Application Servers
  • 22.5.7.Subscription for Network-Initiated Deregistration
  • 22.6.Call Setup and Release
  • 22.6.1.Contents of the INVITE Request
  • 22.6.2.Initial INVITE Request and Response
  • 22.6.3.Acceptance of the Initial INVITE
  • 22.6.4.Establishment of a Call to a Circuit Switched Network
  • 22.6.5.Call Release
  • 22.7.Access Domain Selection
  • 22.7.1.Mobile-Originated Calls
  • 22.7.2.Mobile-Terminated Calls
  • 22.8.Single Radio Voice Call Continuity
  • 22.8.1.Introduction
  • 22.8.2.SRVCC Architecture
  • 22.8.3.Attach, Registration and Call Setup Procedures
  • 22.8.4.Handover Preparation
  • 22.8.5.Updating the Remote Leg
  • 22.8.6.Releasing the Source Leg
  • 22.8.7.Handover Execution and Completion
  • 22.8.8.Evolution of SRVCC
  • 22.9.IMS Centralized Services
  • 22.10.IMS Emergency Calls
  • 22.10.1.Emergency Call Architecture
  • 22.10.2.Emergency Call Setup Procedure
  • 22.11.Delivery of SMS Messages over the IMS
  • 22.11.1.SMS Architecture
  • 22.11.2.Access Domain Selection
  • References
  • 23.1.Peak Data Rates of LTE and LTE-Advanced
  • 23.1.1.Increase of the Peak Data Rate
  • 23.1.2.Limitations on the Peak Data Rate
  • 23.2.Coverage of an LTE Cell
  • 23.2.1.Uplink Link Budget
  • 23.2.2.Downlink Link Budget
  • 23.2.3.Propagation Modelling
  • 23.2.4.Coverage Estimation
  • 23.3.Capacity of an LTE Cell
  • 23.3.1.Capacity Estimation
  • 23.3.2.Cell Capacity Simulations
  • 23.4.Performance of Voice over IP
  • 23.4.1.AMR Codec Modes
  • 23.4.2.Transmission of AMR Frames on the Air Interface
  • 23.4.3.Transmission of AMR Frames in the Fixed Network
  • References.