Combining pattern classifiers : methods and algorithms /

"Combined classifiers, which are central to the ubiquitous performance of pattern recognition and machine learning, are generally considered more accurate than single classifiers. In a didactic, detailed assessment, Combining Pattern Classifiers examines the basic theories and tactics of classi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kuncheva, Ludmila I. (Ludmila Ilieva), 1959-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, NJ : Wiley, 2014.
Έκδοση:Second edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06307nam a2200829 4500
001 ocn878051089
003 OCoLC
005 20170828023338.0
006 m o d
007 cr |||||||||||
008 140422s2014 nju ob 001 0 eng
010 |a  2014016123 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d EBLCP  |d YDXCP  |d OCLCF  |d DG1  |d UMI  |d E7B  |d OCLCO  |d COO  |d DEBBG  |d OCLCQ  |d DEBSZ  |d B24X7  |d VT2  |d DG1  |d COCUF  |d DG1  |d MOR  |d LIP  |d PIFAG  |d ZCU  |d LIV  |d MERUC  |d GrThAP 
066 |c Zsym 
019 |a 891397879  |a 903257921  |a 913462197  |a 927509113  |a 961585666  |a 962644700 
020 |a 9781118914540  |q (ePub) 
020 |a 1118914546  |q (ePub) 
020 |a 9781118914557  |q (Adobe PDF) 
020 |a 1118914554  |q (Adobe PDF) 
020 |a 9781118914564 
020 |a 1118914562 
020 |z 9781118315231  |q (hardback) 
020 |z 1118315235  |q (hardback) 
029 1 |a CHBIS  |b 010259798 
029 1 |a CHVBK  |b 325941033 
029 1 |a DEBBG  |b BV042487511 
029 1 |a NZ1  |b 15920915 
029 1 |a DEBSZ  |b 431744548 
029 1 |a DEBSZ  |b 434829099 
029 1 |a DEBSZ  |b 449440737 
029 1 |a AU@  |b 000052794990 
029 1 |a DEBBG  |b BV044069807 
029 1 |a CHVBK  |b 480232423 
029 1 |a CHNEW  |b 000943025 
029 1 |a DEBSZ  |b 485047659 
035 |a (OCoLC)878051089  |z (OCoLC)891397879  |z (OCoLC)903257921  |z (OCoLC)913462197  |z (OCoLC)927509113  |z (OCoLC)961585666  |z (OCoLC)962644700 
037 |a CL0500000553  |b Safari Books Online 
042 |a pcc 
050 0 0 |a TK7882.P3 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 0 |a 006.4  |2 23 
084 |a TEC015000  |a COM016000  |a COM021030  |2 bisacsh 
049 |a MAIN 
100 1 |a Kuncheva, Ludmila I.  |q (Ludmila Ilieva),  |d 1959- 
245 1 0 |a Combining pattern classifiers :  |b methods and algorithms /  |c Ludmila I. Kuncheva. 
250 |a Second edition. 
264 1 |a Hoboken, NJ :  |b Wiley,  |c 2014. 
300 |a 1 online resource (xxi, 357 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "Combined classifiers, which are central to the ubiquitous performance of pattern recognition and machine learning, are generally considered more accurate than single classifiers. In a didactic, detailed assessment, Combining Pattern Classifiers examines the basic theories and tactics of classifier combination while presenting the most recent research in the field. Among the pattern recognition tasks that this book explores are mail sorting, face recognition, signature verification, decoding brain fMRI images, identifying emotions, analyzing gene microarray data, and spotting patterns in consumer preference. This updated second edition is equipped with the latest knowledge for academics, students, and practitioners involved in pattern recognition fields"--  |c Provided by publisher. 
520 |a "Classifier Combination is a field of growing interest within the very large area of Pattern Classification"--  |c Provided by publisher. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a ""Titlepage -- Copyright -- Dedication -- Preface -- The Playing Field -- Software -- Structure and What is New in the Second Edition -- Who is This Book For? -- Notes -- Acknowledgements -- 1 Fundamentals of Pattern Recognition -- 1.1 Basic Concepts: Class, Feature, Data Set -- 1.2 Classifier, Discriminant Functions, Classification Regions -- 1.3 Classification Error and Classification Accuracy -- 1.4 Experimental Comparison of Classifiers -- 1.5 Bayes Decision Theory -- 1.6 Clustering and Feature Selection -- 1.7 Challenges of Real-Life Data -- Appendix"" 
505 8 |a ""1.A.1 Data Generation -- 1.A.2 Comparison of Classifiers -- 1.A.3 Feature Selection -- Notes -- 2 Base Classifiers -- 2.1 Linear and Quadratic Classifiers -- 2.2 Decision Tree Classifiers -- 2.3 The NaÃv̄e Bayes Classifier -- 2.4 Neural Networks -- 2.5 Support Vector Machines -- 2.6 The k-Nearest Neighbor Classifier (k-nn) -- 2.7 Final Remarks -- Appendix -- 2.A.1 Matlab Code for the Fish Data -- 2.A.2 Matlab Code for Individual Classifiers -- Notes -- 3 An Overview of the Field -- 3.1 Philosophy -- 3.2 Two Examples -- 3.3 Structure of the Area"" 
505 8 |6 880-01  |a ""5.3 Nontrainable (Fixed) Combination Rules -- 5.4 The Weighted Average (Linear Combiner) -- 5.5 A Classifier as a Combiner -- 5.6 An Example of Nine Combiners for Continuous-Valued Outputs -- 5.7 To Train or Not to Train? -- Appendix -- 5.A.1 Theoretical Classification Error for the Simple Combiners -- 5.A.2 Selected Matlab Code -- Notes -- 6 Ensemble Methods -- 6.1 Bagging -- 6.2 Random Forests -- 6.3 Adaboost -- 6.4 Random Subspace Ensembles -- 6.5 Rotation Forest -- 6.6 Random Linear Oracle -- 6.7 Error Correcting Output Codes (ECOC) -- Appendix"" 
505 8 |a ""6.A.1 Bagging -- 6.A.2 AdaBoost -- 6.A.3 Random Subspace -- 6.A.4 Rotation Forest -- 6.A.5 Random Linear Oracle -- 6.A.6 Ecoc -- Notes -- 7 Classifier Selection -- 7.1 Preliminaries -- 7.2 Why Classifier Selection Works -- 7.3 Estimating Local Competence Dynamically -- 7.4 Pre-Estimation of the Competence Regions -- 7.5 Simultaneous Training of Regions and Classifiers -- 7.6 Cascade Classifiers -- Appendix: Selected Matlab Code -- 7.A.1 Banana Data -- 7.A.2 Evolutionary Algorithm for a Selection Ensemble for the Banana Data"" 
650 0 |a Pattern recognition systems. 
650 0 |a Image processing  |x Digital techniques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Imaging Systems.  |2 bisacsh 
650 7 |a COMPUTERS  |x Computer Vision & Pattern Recognition.  |2 bisacsh 
650 7 |a COMPUTERS  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a Image processing  |x Digital techniques.  |2 fast  |0 (OCoLC)fst00967508 
650 7 |a Pattern recognition systems.  |2 fast  |0 (OCoLC)fst01055266 
650 4 |a COMPUTERS / Computer Vision & Pattern Recognition. 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Kuncheva, Ludmila I. (Ludmila Ilieva), 1959-  |t Combining pattern classifiers.  |b Second edition.  |d Hoboken, New Jersey : Wiley, [2014]  |z 9781118315231  |w (DLC) 2014014214  |w (OCoLC)878050954 
856 4 0 |u https://doi.org/10.1002/9781118914564  |z Full Text via HEAL-Link 
994 |a 92  |b DG1