Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pan, C. T. (Συγγραφέας), Hwang, Y. M., 1958- (Συγγραφέας), Lin, Liwei (Συγγραφέας), Chen, Ying-Chung, 1956- (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : IEEE Wiley, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 09446nam a2200649 4500
001 ocn880421150
003 OCoLC
005 20170124070616.4
006 m o d
007 cr cnu---unuuu
008 140523s2014 si o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d CUS  |d DG1  |d OCLCO  |d OHI  |d YDXCP  |d IEEEE  |d OCLCF  |d UPM  |d TEFOD  |d OCLCQ  |d TEFOD  |d GrThAP 
020 |a 9781118487808  |q (electronic bk.) 
020 |a 111848780X  |q (electronic bk.) 
020 |a 9781118487815  |q (electronic bk.) 
020 |a 1118487818  |q (electronic bk.) 
020 |a 9781118487822  |q (electronic bk.) 
020 |a 1118487826  |q (electronic bk.) 
020 |z 9781118487792 
020 |z 1118487796 
029 1 |a AU@  |b 000053396253 
029 1 |a CHBIS  |b 010259599 
029 1 |a CHVBK  |b 325940592 
029 1 |a NZ1  |b 15581268 
029 1 |a NZ1  |b 15906843 
029 1 |a DEBBG  |b BV041997495 
029 1 |a NLGGC  |b 375711716 
029 1 |a GBVCP  |b 814330207 
035 |a (OCoLC)880421150 
037 |a 3D4D0E16-AA67-4DDF-A6C3-8DB79EA2FB94  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a TK7875 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.313  |2 23 
049 |a MAIN 
100 1 |a Pan, C. T.,  |e author. 
245 1 0 |a Design and fabrication of self-powered micro-harvesters :  |b rotating and vibrating micro-power systems /  |c C.T. Pan, Y.M. Hwang, Liwei Lin, Ying-Chung Chen. 
264 1 |a Singapore :  |b IEEE Wiley,  |c 2014. 
300 |a 1 online resource (xv, 269 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Machine generated contents note: 1. Introduction -- 1.1. Background -- 1.2. Energy Harvesters -- 1.2.1. Piezoelectric ZnO Energy Harvester -- 1.2.2. Vibrational Electromagnetic Generators -- 1.2.3. Rotary Electromagnetic Generators -- 1.2.4. NFES Piezoelectric PVDF Energy Harvester -- 1.3. Overview -- 2. Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1. Introduction -- 2.2. Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1. Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2. Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.5. Optimal Thickness of PET Substrate -- 2.2.4. Model Solution of Cantilever Plate Equation -- 2.2.5. Vibration-Induced Electric Potential and Electric Power -- 2.2.6. Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7. Model Analysis and Harmonic Analysis -- 2.2.8. Results of Model Analysis and Harmonic Analysis -- 2.3. The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1. Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2. Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3. Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4. Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5. Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6. Application of ZnO/PET-Based Generator to Flash Signal LED Module -- 2.3.7. Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4. Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1. Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2. Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3. Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4. Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5. Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6. Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7. Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8. Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9. Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5. Summary -- References -- 3. Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1. Introduction -- 3.2.Comparisons between MCTG and SMTG -- 3.2.1. Magnetic Core-Type Generator (MCTG) -- 3.2.2. Sided Magnet-Type Generator (SMTG) -- 3.3. Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1. Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2. Analysis Mode of the Microvibration Structure -- 3.3.3. Analysis Mode of Magnetic Field -- 3.3.4. Evaluation of Various Parameters of Power Output -- 3.4. Analytical Results and Discussion -- 3.4.1. Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2. Finite Element Models for Magnetic Density Distribution -- 3.4.3. Power Output Evaluation -- 3.5. Fabrication of Microcoil for Microgenerator -- 3.5.1. Microspring and Induction Coil -- 3.5.2. Microspring and Magnet -- 3.6. Tests and Experiments -- 3.6.1. Measurement System -- 3.6.2. Measurement Results and Discussion -- 3.6.3.Comparison between Measured Results and Analytical Values -- 3.7. Conclusions -- 3.7.1. Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2. Fabrication of LTCC Microsensor -- 3.7.3. Measurement and Analysis Results -- 3.8. Summary -- References -- 4. Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1. Introduction -- 4.1.1. Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2. Vibrational Electromagnetic Generators -- 4.1.3. Rotary Electromagnetic Generators -- 4.1.4. Generator Processes -- 4.1.5. Lithographie Galvanoformung Abformung Process -- 4.1.6. Winding Processes -- 4.1.7. LTCC -- 4.1.8. Printed Circuit Board Processes -- 4.1.9. Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1 Winding Generator -- 4.2.1. Design -- 4.2.2. Analytical Formulation -- 4.2.3. Simulation -- 4.2.4. Fabrication Process -- 4.2.5. Results and Discussion (1) -- 4.2.6. Results and Discussion (2) -- 4.3 Case 2 LTCC Generator -- 4.3.1. Simulation -- 4.3.2. Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3. Simplification -- 4.3.4. Analysis of Vector Magnetic Potential -- 4.3.5. Analytical Solutions for Power Generation -- 4.4. Fabrication -- 4.4.1. LTCC Process -- 4.4.2. Magnet Process -- 4.4.3. Measurement Set-up -- 4.5. Results and Discussion -- 4.5.1. Design -- 4.5.2. Analytical Solutions -- 4.5.3. Fabrication -- References -- 5. Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1. Introduction -- 5.2. Fundamentals of Electrospinning Technology -- 5.2.1. Introduction to Electrospinning -- 5.2.2. Alignment and Assembly of Nanofibers -- 5.3. Near-Field Electrospinning -- 5.3.1. Introduction and Background -- 5.3.2. Principles of Operation -- 5.3.3. Process and Experiment -- 5.3.4. Summary -- 5.4. Continuous NFES -- 5.4.1. Introduction and Background -- 5.4.2. Principles of Operation -- 5.4.3. Controllability and Continuity -- 5.4.4. Process Characterization -- 5.4.5. Summary -- 5.5. Direct-Write Piezoelectric Nanogenerator -- 5.5.1. Introduction and Background -- 5.5.2. Polyvinylidene Fluoride -- 5.5.3. Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4. Electrospinning of PVDF Nanofibers -- 5.5.5. Detailed Discussion of Process Parameters -- 5.5.6. Experimental Realization of PVDF Nanogenerator -- 5.5.7. Summary -- 5.6. Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1. Material and Structural Characteristics -- 5.6.2. Operation of Nanogenerator -- 5.6.3. Summary and Future Prospects -- 5.7. Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1. Introduction and Background -- 5.7.2. Working Principle -- 5.7.3. Device Fabrication -- 5.7.4. Experimental Results -- 5.7.5. Summary -- 5.8. Conclusion -- 5.8.1. Near-Field Electrospinning -- 5.8.2. Continuous Near-Field Electrospinning -- 5.8.3. Direct-Write Piezoelectric PVDF -- 5.9. Future Directions -- 5.9.1. NFES Integrated Nanofiber Sensors -- 5.9.2. NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3. NFES Biological Applications -- 5.9.4. Direct-Write Piezoelectric PVDF Nanogenerators -- References. 
650 0 |a Microelectromechanical systems  |x Design and construction. 
650 0 |a Electric generators  |x Design and construction. 
650 0 |a Energy harvesting. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Electric generators  |x Design and construction.  |2 fast  |0 (OCoLC)fst00904865 
650 7 |a Energy harvesting.  |2 fast  |0 (OCoLC)fst01750045 
650 7 |a Microelectromechanical systems  |x Design and construction.  |2 fast  |0 (OCoLC)fst01019747 
655 4 |a Electronic books. 
700 1 |a Hwang, Y. M.,  |d 1958-  |e author. 
700 1 |a Lin, Liwei,  |e author. 
700 1 |a Chen, Ying-Chung,  |d 1956-  |e author. 
776 0 8 |i Print version:  |a Pan, C.T., author.  |t Design and fabrication of self-powered micro-harvesters  |z 9781118487792  |w (OCoLC)878860618 
856 4 0 |u https://doi.org/10.1002/9781118487808  |z Full Text via HEAL-Link 
994 |a 92  |b DG1