|
|
|
|
LEADER |
09446nam a2200649 4500 |
001 |
ocn880421150 |
003 |
OCoLC |
005 |
20170124070616.4 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140523s2014 si o 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d CUS
|d DG1
|d OCLCO
|d OHI
|d YDXCP
|d IEEEE
|d OCLCF
|d UPM
|d TEFOD
|d OCLCQ
|d TEFOD
|d GrThAP
|
020 |
|
|
|a 9781118487808
|q (electronic bk.)
|
020 |
|
|
|a 111848780X
|q (electronic bk.)
|
020 |
|
|
|a 9781118487815
|q (electronic bk.)
|
020 |
|
|
|a 1118487818
|q (electronic bk.)
|
020 |
|
|
|a 9781118487822
|q (electronic bk.)
|
020 |
|
|
|a 1118487826
|q (electronic bk.)
|
020 |
|
|
|z 9781118487792
|
020 |
|
|
|z 1118487796
|
029 |
1 |
|
|a AU@
|b 000053396253
|
029 |
1 |
|
|a CHBIS
|b 010259599
|
029 |
1 |
|
|a CHVBK
|b 325940592
|
029 |
1 |
|
|a NZ1
|b 15581268
|
029 |
1 |
|
|a NZ1
|b 15906843
|
029 |
1 |
|
|a DEBBG
|b BV041997495
|
029 |
1 |
|
|a NLGGC
|b 375711716
|
029 |
1 |
|
|a GBVCP
|b 814330207
|
035 |
|
|
|a (OCoLC)880421150
|
037 |
|
|
|a 3D4D0E16-AA67-4DDF-A6C3-8DB79EA2FB94
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a TK7875
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.313
|2 23
|
049 |
|
|
|a MAIN
|
100 |
1 |
|
|a Pan, C. T.,
|e author.
|
245 |
1 |
0 |
|a Design and fabrication of self-powered micro-harvesters :
|b rotating and vibrating micro-power systems /
|c C.T. Pan, Y.M. Hwang, Liwei Lin, Ying-Chung Chen.
|
264 |
|
1 |
|a Singapore :
|b IEEE Wiley,
|c 2014.
|
300 |
|
|
|a 1 online resource (xv, 269 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Machine generated contents note: 1. Introduction -- 1.1. Background -- 1.2. Energy Harvesters -- 1.2.1. Piezoelectric ZnO Energy Harvester -- 1.2.2. Vibrational Electromagnetic Generators -- 1.2.3. Rotary Electromagnetic Generators -- 1.2.4. NFES Piezoelectric PVDF Energy Harvester -- 1.3. Overview -- 2. Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1. Introduction -- 2.2. Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1. Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2. Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.5. Optimal Thickness of PET Substrate -- 2.2.4. Model Solution of Cantilever Plate Equation -- 2.2.5. Vibration-Induced Electric Potential and Electric Power -- 2.2.6. Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7. Model Analysis and Harmonic Analysis -- 2.2.8. Results of Model Analysis and Harmonic Analysis -- 2.3. The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1. Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2. Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3. Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4. Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5. Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6. Application of ZnO/PET-Based Generator to Flash Signal LED Module -- 2.3.7. Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4. Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1. Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2. Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3. Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4. Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5. Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6. Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7. Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8. Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9. Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5. Summary -- References -- 3. Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1. Introduction -- 3.2.Comparisons between MCTG and SMTG -- 3.2.1. Magnetic Core-Type Generator (MCTG) -- 3.2.2. Sided Magnet-Type Generator (SMTG) -- 3.3. Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1. Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2. Analysis Mode of the Microvibration Structure -- 3.3.3. Analysis Mode of Magnetic Field -- 3.3.4. Evaluation of Various Parameters of Power Output -- 3.4. Analytical Results and Discussion -- 3.4.1. Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2. Finite Element Models for Magnetic Density Distribution -- 3.4.3. Power Output Evaluation -- 3.5. Fabrication of Microcoil for Microgenerator -- 3.5.1. Microspring and Induction Coil -- 3.5.2. Microspring and Magnet -- 3.6. Tests and Experiments -- 3.6.1. Measurement System -- 3.6.2. Measurement Results and Discussion -- 3.6.3.Comparison between Measured Results and Analytical Values -- 3.7. Conclusions -- 3.7.1. Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2. Fabrication of LTCC Microsensor -- 3.7.3. Measurement and Analysis Results -- 3.8. Summary -- References -- 4. Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1. Introduction -- 4.1.1. Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2. Vibrational Electromagnetic Generators -- 4.1.3. Rotary Electromagnetic Generators -- 4.1.4. Generator Processes -- 4.1.5. Lithographie Galvanoformung Abformung Process -- 4.1.6. Winding Processes -- 4.1.7. LTCC -- 4.1.8. Printed Circuit Board Processes -- 4.1.9. Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1 Winding Generator -- 4.2.1. Design -- 4.2.2. Analytical Formulation -- 4.2.3. Simulation -- 4.2.4. Fabrication Process -- 4.2.5. Results and Discussion (1) -- 4.2.6. Results and Discussion (2) -- 4.3 Case 2 LTCC Generator -- 4.3.1. Simulation -- 4.3.2. Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3. Simplification -- 4.3.4. Analysis of Vector Magnetic Potential -- 4.3.5. Analytical Solutions for Power Generation -- 4.4. Fabrication -- 4.4.1. LTCC Process -- 4.4.2. Magnet Process -- 4.4.3. Measurement Set-up -- 4.5. Results and Discussion -- 4.5.1. Design -- 4.5.2. Analytical Solutions -- 4.5.3. Fabrication -- References -- 5. Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1. Introduction -- 5.2. Fundamentals of Electrospinning Technology -- 5.2.1. Introduction to Electrospinning -- 5.2.2. Alignment and Assembly of Nanofibers -- 5.3. Near-Field Electrospinning -- 5.3.1. Introduction and Background -- 5.3.2. Principles of Operation -- 5.3.3. Process and Experiment -- 5.3.4. Summary -- 5.4. Continuous NFES -- 5.4.1. Introduction and Background -- 5.4.2. Principles of Operation -- 5.4.3. Controllability and Continuity -- 5.4.4. Process Characterization -- 5.4.5. Summary -- 5.5. Direct-Write Piezoelectric Nanogenerator -- 5.5.1. Introduction and Background -- 5.5.2. Polyvinylidene Fluoride -- 5.5.3. Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4. Electrospinning of PVDF Nanofibers -- 5.5.5. Detailed Discussion of Process Parameters -- 5.5.6. Experimental Realization of PVDF Nanogenerator -- 5.5.7. Summary -- 5.6. Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1. Material and Structural Characteristics -- 5.6.2. Operation of Nanogenerator -- 5.6.3. Summary and Future Prospects -- 5.7. Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1. Introduction and Background -- 5.7.2. Working Principle -- 5.7.3. Device Fabrication -- 5.7.4. Experimental Results -- 5.7.5. Summary -- 5.8. Conclusion -- 5.8.1. Near-Field Electrospinning -- 5.8.2. Continuous Near-Field Electrospinning -- 5.8.3. Direct-Write Piezoelectric PVDF -- 5.9. Future Directions -- 5.9.1. NFES Integrated Nanofiber Sensors -- 5.9.2. NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3. NFES Biological Applications -- 5.9.4. Direct-Write Piezoelectric PVDF Nanogenerators -- References.
|
650 |
|
0 |
|a Microelectromechanical systems
|x Design and construction.
|
650 |
|
0 |
|a Electric generators
|x Design and construction.
|
650 |
|
0 |
|a Energy harvesting.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Electric generators
|x Design and construction.
|2 fast
|0 (OCoLC)fst00904865
|
650 |
|
7 |
|a Energy harvesting.
|2 fast
|0 (OCoLC)fst01750045
|
650 |
|
7 |
|a Microelectromechanical systems
|x Design and construction.
|2 fast
|0 (OCoLC)fst01019747
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Hwang, Y. M.,
|d 1958-
|e author.
|
700 |
1 |
|
|a Lin, Liwei,
|e author.
|
700 |
1 |
|
|a Chen, Ying-Chung,
|d 1956-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Pan, C.T., author.
|t Design and fabrication of self-powered micro-harvesters
|z 9781118487792
|w (OCoLC)878860618
|
856 |
4 |
0 |
|u https://doi.org/10.1002/9781118487808
|z Full Text via HEAL-Link
|
994 |
|
|
|a 92
|b DG1
|