Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pan, C. T. (Συγγραφέας), Hwang, Y. M., 1958- (Συγγραφέας), Lin, Liwei (Συγγραφέας), Chen, Ying-Chung, 1956- (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : IEEE Wiley, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Machine generated contents note: 1. Introduction
  • 1.1. Background
  • 1.2. Energy Harvesters
  • 1.2.1. Piezoelectric ZnO Energy Harvester
  • 1.2.2. Vibrational Electromagnetic Generators
  • 1.2.3. Rotary Electromagnetic Generators
  • 1.2.4. NFES Piezoelectric PVDF Energy Harvester
  • 1.3. Overview
  • 2. Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films
  • 2.1. Introduction
  • 2.2. Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters
  • 2.2.1. Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester
  • 2.2.2. Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film
  • 2.2.5. Optimal Thickness of PET Substrate
  • 2.2.4. Model Solution of Cantilever Plate Equation
  • 2.2.5. Vibration-Induced Electric Potential and Electric Power
  • 2.2.6. Static Analysis to Calculate the Optimal Thickness of the PET Substrate
  • 2.2.7. Model Analysis and Harmonic Analysis
  • 2.2.8. Results of Model Analysis and Harmonic Analysis
  • 2.3. The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates
  • 2.3.1. Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates
  • 2.3.2. Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates
  • 2.3.3. Sputtering of Al and ITO Conductive Thin Films on PET Substrates
  • 2.3.4. Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering
  • 2.3.5. Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions
  • 2.3.6. Application of ZnO/PET-Based Generator to Flash Signal LED Module
  • 2.3.7. Design and Performance of a Broad Bandwidth Energy Harvesting System
  • 2.4. Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators
  • 2.4.1. Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates
  • 2.4.2. Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator
  • 2.4.3. Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator
  • 2.4.4. Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators
  • 2.4.5. Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates
  • 2.4.6. Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates
  • 2.4.7. Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator
  • 2.4.8. Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304
  • 2.4.9. Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator
  • 2.5. Summary
  • References
  • 3. Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators
  • 3.1. Introduction
  • 3.2.Comparisons between MCTG and SMTG
  • 3.2.1. Magnetic Core-Type Generator (MCTG)
  • 3.2.2. Sided Magnet-Type Generator (SMTG)
  • 3.3. Analysis of Electromagnetic Vibration-Induced Microgenerators
  • 3.3.1. Design of Electromagnetic Vibration-Induced Microgenerators
  • 3.3.2. Analysis Mode of the Microvibration Structure
  • 3.3.3. Analysis Mode of Magnetic Field
  • 3.3.4. Evaluation of Various Parameters of Power Output
  • 3.4. Analytical Results and Discussion
  • 3.4.1. Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring
  • 3.4.2. Finite Element Models for Magnetic Density Distribution
  • 3.4.3. Power Output Evaluation
  • 3.5. Fabrication of Microcoil for Microgenerator
  • 3.5.1. Microspring and Induction Coil
  • 3.5.2. Microspring and Magnet
  • 3.6. Tests and Experiments
  • 3.6.1. Measurement System
  • 3.6.2. Measurement Results and Discussion
  • 3.6.3.Comparison between Measured Results and Analytical Values
  • 3.7. Conclusions
  • 3.7.1. Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field
  • 3.7.2. Fabrication of LTCC Microsensor
  • 3.7.3. Measurement and Analysis Results
  • 3.8. Summary
  • References
  • 4. Design and Fabrication of Rotary Electromagnetic Microgenerator
  • 4.1. Introduction
  • 4.1.1. Piezoelectric, Thermoelectric, and Electrostatic Generators
  • 4.1.2. Vibrational Electromagnetic Generators
  • 4.1.3. Rotary Electromagnetic Generators
  • 4.1.4. Generator Processes
  • 4.1.5. Lithographie Galvanoformung Abformung Process
  • 4.1.6. Winding Processes
  • 4.1.7. LTCC
  • 4.1.8. Printed Circuit Board Processes
  • 4.1.9. Finite-Element Simulation and Analytical Solutions
  • 4.2 Case 1 Winding Generator
  • 4.2.1. Design
  • 4.2.2. Analytical Formulation
  • 4.2.3. Simulation
  • 4.2.4. Fabrication Process
  • 4.2.5. Results and Discussion (1)
  • 4.2.6. Results and Discussion (2)
  • 4.3 Case 2 LTCC Generator
  • 4.3.1. Simulation
  • 4.3.2. Analytical Theorem of Microgenerator Electromagnetism
  • 4.3.3. Simplification
  • 4.3.4. Analysis of Vector Magnetic Potential
  • 4.3.5. Analytical Solutions for Power Generation
  • 4.4. Fabrication
  • 4.4.1. LTCC Process
  • 4.4.2. Magnet Process
  • 4.4.3. Measurement Set-up
  • 4.5. Results and Discussion
  • 4.5.1. Design
  • 4.5.2. Analytical Solutions
  • 4.5.3. Fabrication
  • References
  • 5. Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters
  • 5.1. Introduction
  • 5.2. Fundamentals of Electrospinning Technology
  • 5.2.1. Introduction to Electrospinning
  • 5.2.2. Alignment and Assembly of Nanofibers
  • 5.3. Near-Field Electrospinning
  • 5.3.1. Introduction and Background
  • 5.3.2. Principles of Operation
  • 5.3.3. Process and Experiment
  • 5.3.4. Summary
  • 5.4. Continuous NFES
  • 5.4.1. Introduction and Background
  • 5.4.2. Principles of Operation
  • 5.4.3. Controllability and Continuity
  • 5.4.4. Process Characterization
  • 5.4.5. Summary
  • 5.5. Direct-Write Piezoelectric Nanogenerator
  • 5.5.1. Introduction and Background
  • 5.5.2. Polyvinylidene Fluoride
  • 5.5.3. Theoretical Studies for Realization of Electrospun PVDF Nanofibers
  • 5.5.4. Electrospinning of PVDF Nanofibers
  • 5.5.5. Detailed Discussion of Process Parameters
  • 5.5.6. Experimental Realization of PVDF Nanogenerator
  • 5.5.7. Summary
  • 5.6. Materials, Structure, and Operation of Nanogenerator with Future Prospects
  • 5.6.1. Material and Structural Characteristics
  • 5.6.2. Operation of Nanogenerator
  • 5.6.3. Summary and Future Prospects
  • 5.7. Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate
  • 5.7.1. Introduction and Background
  • 5.7.2. Working Principle
  • 5.7.3. Device Fabrication
  • 5.7.4. Experimental Results
  • 5.7.5. Summary
  • 5.8. Conclusion
  • 5.8.1. Near-Field Electrospinning
  • 5.8.2. Continuous Near-Field Electrospinning
  • 5.8.3. Direct-Write Piezoelectric PVDF
  • 5.9. Future Directions
  • 5.9.1. NFES Integrated Nanofiber Sensors
  • 5.9.2. NFES One-Dimensional Sub-Wavelength Waveguide
  • 5.9.3. NFES Biological Applications
  • 5.9.4. Direct-Write Piezoelectric PVDF Nanogenerators
  • References.