Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems /
Κύριοι συγγραφείς: | , , , |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
IEEE Wiley,
2014.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Machine generated contents note: 1. Introduction
- 1.1. Background
- 1.2. Energy Harvesters
- 1.2.1. Piezoelectric ZnO Energy Harvester
- 1.2.2. Vibrational Electromagnetic Generators
- 1.2.3. Rotary Electromagnetic Generators
- 1.2.4. NFES Piezoelectric PVDF Energy Harvester
- 1.3. Overview
- 2. Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films
- 2.1. Introduction
- 2.2. Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters
- 2.2.1. Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester
- 2.2.2. Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film
- 2.2.5. Optimal Thickness of PET Substrate
- 2.2.4. Model Solution of Cantilever Plate Equation
- 2.2.5. Vibration-Induced Electric Potential and Electric Power
- 2.2.6. Static Analysis to Calculate the Optimal Thickness of the PET Substrate
- 2.2.7. Model Analysis and Harmonic Analysis
- 2.2.8. Results of Model Analysis and Harmonic Analysis
- 2.3. The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates
- 2.3.1. Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates
- 2.3.2. Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates
- 2.3.3. Sputtering of Al and ITO Conductive Thin Films on PET Substrates
- 2.3.4. Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering
- 2.3.5. Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions
- 2.3.6. Application of ZnO/PET-Based Generator to Flash Signal LED Module
- 2.3.7. Design and Performance of a Broad Bandwidth Energy Harvesting System
- 2.4. Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators
- 2.4.1. Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates
- 2.4.2. Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator
- 2.4.3. Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator
- 2.4.4. Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators
- 2.4.5. Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates
- 2.4.6. Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates
- 2.4.7. Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator
- 2.4.8. Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304
- 2.4.9. Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator
- 2.5. Summary
- References
- 3. Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators
- 3.1. Introduction
- 3.2.Comparisons between MCTG and SMTG
- 3.2.1. Magnetic Core-Type Generator (MCTG)
- 3.2.2. Sided Magnet-Type Generator (SMTG)
- 3.3. Analysis of Electromagnetic Vibration-Induced Microgenerators
- 3.3.1. Design of Electromagnetic Vibration-Induced Microgenerators
- 3.3.2. Analysis Mode of the Microvibration Structure
- 3.3.3. Analysis Mode of Magnetic Field
- 3.3.4. Evaluation of Various Parameters of Power Output
- 3.4. Analytical Results and Discussion
- 3.4.1. Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring
- 3.4.2. Finite Element Models for Magnetic Density Distribution
- 3.4.3. Power Output Evaluation
- 3.5. Fabrication of Microcoil for Microgenerator
- 3.5.1. Microspring and Induction Coil
- 3.5.2. Microspring and Magnet
- 3.6. Tests and Experiments
- 3.6.1. Measurement System
- 3.6.2. Measurement Results and Discussion
- 3.6.3.Comparison between Measured Results and Analytical Values
- 3.7. Conclusions
- 3.7.1. Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field
- 3.7.2. Fabrication of LTCC Microsensor
- 3.7.3. Measurement and Analysis Results
- 3.8. Summary
- References
- 4. Design and Fabrication of Rotary Electromagnetic Microgenerator
- 4.1. Introduction
- 4.1.1. Piezoelectric, Thermoelectric, and Electrostatic Generators
- 4.1.2. Vibrational Electromagnetic Generators
- 4.1.3. Rotary Electromagnetic Generators
- 4.1.4. Generator Processes
- 4.1.5. Lithographie Galvanoformung Abformung Process
- 4.1.6. Winding Processes
- 4.1.7. LTCC
- 4.1.8. Printed Circuit Board Processes
- 4.1.9. Finite-Element Simulation and Analytical Solutions
- 4.2 Case 1 Winding Generator
- 4.2.1. Design
- 4.2.2. Analytical Formulation
- 4.2.3. Simulation
- 4.2.4. Fabrication Process
- 4.2.5. Results and Discussion (1)
- 4.2.6. Results and Discussion (2)
- 4.3 Case 2 LTCC Generator
- 4.3.1. Simulation
- 4.3.2. Analytical Theorem of Microgenerator Electromagnetism
- 4.3.3. Simplification
- 4.3.4. Analysis of Vector Magnetic Potential
- 4.3.5. Analytical Solutions for Power Generation
- 4.4. Fabrication
- 4.4.1. LTCC Process
- 4.4.2. Magnet Process
- 4.4.3. Measurement Set-up
- 4.5. Results and Discussion
- 4.5.1. Design
- 4.5.2. Analytical Solutions
- 4.5.3. Fabrication
- References
- 5. Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters
- 5.1. Introduction
- 5.2. Fundamentals of Electrospinning Technology
- 5.2.1. Introduction to Electrospinning
- 5.2.2. Alignment and Assembly of Nanofibers
- 5.3. Near-Field Electrospinning
- 5.3.1. Introduction and Background
- 5.3.2. Principles of Operation
- 5.3.3. Process and Experiment
- 5.3.4. Summary
- 5.4. Continuous NFES
- 5.4.1. Introduction and Background
- 5.4.2. Principles of Operation
- 5.4.3. Controllability and Continuity
- 5.4.4. Process Characterization
- 5.4.5. Summary
- 5.5. Direct-Write Piezoelectric Nanogenerator
- 5.5.1. Introduction and Background
- 5.5.2. Polyvinylidene Fluoride
- 5.5.3. Theoretical Studies for Realization of Electrospun PVDF Nanofibers
- 5.5.4. Electrospinning of PVDF Nanofibers
- 5.5.5. Detailed Discussion of Process Parameters
- 5.5.6. Experimental Realization of PVDF Nanogenerator
- 5.5.7. Summary
- 5.6. Materials, Structure, and Operation of Nanogenerator with Future Prospects
- 5.6.1. Material and Structural Characteristics
- 5.6.2. Operation of Nanogenerator
- 5.6.3. Summary and Future Prospects
- 5.7. Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate
- 5.7.1. Introduction and Background
- 5.7.2. Working Principle
- 5.7.3. Device Fabrication
- 5.7.4. Experimental Results
- 5.7.5. Summary
- 5.8. Conclusion
- 5.8.1. Near-Field Electrospinning
- 5.8.2. Continuous Near-Field Electrospinning
- 5.8.3. Direct-Write Piezoelectric PVDF
- 5.9. Future Directions
- 5.9.1. NFES Integrated Nanofiber Sensors
- 5.9.2. NFES One-Dimensional Sub-Wavelength Waveguide
- 5.9.3. NFES Biological Applications
- 5.9.4. Direct-Write Piezoelectric PVDF Nanogenerators
- References.