Inorganic membrane reactors : fundamentals and applications /

Membrane reactors combine membrane functions such as separation, reactant distribution, and catalyst support with chemical reactions in a single unit. The benefits of this approach include enhanced conversion, increased yield, and selectivity, as well as a more compact and cost-effect design of reac...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tan, Xiaoyao
Άλλοι συγγραφείς: Li, Kang, 1960-
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Chichester, West Sussex, United Kingdom : Wiley, [2015]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Inorganic Membrane Reactors: Fundamentals and Applications; Copyright; Contents; Preface; Chapter 1 Fundamentals of Membrane Reactors; 1.1 Introduction; 1.2 Membrane and Membrane Separation; 1.2.1 Membrane Structure; 1.2.2 Membrane Separation; 1.2.3 Membrane Performance; 1.3 Inorganic Membranes; 1.3.1 Types of Inorganic Membranes; 1.3.2 Fabrication of Inorganic Membranes; 1.3.3 Characterization of Inorganic Membranes; 1.3.4 Applications of Inorganic Membranes; 1.4 Inorganic Membrane Reactors; 1.4.1 Basic Principles of Membrane Reactors; 1.4.2 Incorporation of Catalyst in Membrane Reactors.
  • 1.4.3 Configuration of Membrane Reactors1.4.4 Classification of Membrane Reactors; References; Chapter 2 Porous Membrane Reactors; 2.1 Introduction; 2.2 Gas Permeation in Porous Membranes; 2.2.1 Types of Porous Membranes; 2.2.2 Transport Mechanisms; 2.2.3 Gas Permeation Flux through Porous Membranes; 2.3 Preparation of Porous Membranes; 2.3.1 Dip-Coating Method; 2.3.2 Sol-Gel Method; 2.3.3 Chemical Vapor Deposition Method; 2.3.4 Phase Inversion Method; 2.3.5 Other Preparation Methods; 2.4 Porous Membranes for Chemical Reactions; 2.4.1 Membrane Materials; 2.4.2 Membrane Functions.
  • 2.5 Catalysis in Porous Membrane Reactors2.5.1 Catalyst in Membrane Reactors; 2.5.2 Catalyst Deposition in Porous Membranes; 2.6 Operation of Porous Membrane Reactors; 2.6.1 Packed Bed Membrane Reactors; 2.6.2 Catalytic Membrane Reactors; 2.6.3 Coupling of Membrane Functions; 2.6.4 Non-uniform Distribution of Membrane Permeability; 2.7 Applications of Porous Membrane Reactors; 2.7.1 Dehydrogenation Reactions; 2.7.2 Reforming Reactions for Hydrogen Production; 2.7.3 Partial Oxidation Reactions; 2.7.4 Gas-Liquid-Solid Multiphase Reactions; 2.7.5 Other Reactions; 2.8 Prospects and Challenges.
  • NotationReferences; Chapter 3 Zeolite Membrane Reactors; 3.1 Introduction; 3.2 Permeation in Zeolite Membranes; 3.2.1 Types of Zeolite Membranes; 3.2.2 Transport Mechanisms; 3.2.3 Permeation Flux in Zeolite Membranes; 3.3 Preparation of Zeolite Membranes; 3.3.1 In-Situ Crystallization Method; 3.3.2 Secondary Growth Method; 3.3.3 Vapor-Phase Transport Method; 3.3.4 Microwave Synthesis Method; 3.4 Configuration of Zeolite Membrane Reactors; 3.4.1 Packed Bed Membrane Reactor; 3.4.2 Catalytic Membrane Reactor; 3.4.3 Pervaporation Membrane Reactor; 3.4.4 Membrane Microreactor.
  • 3.5 Applications of Zeolite Membrane Reactors3.5.1 Dehydrogenation Reactions; 3.5.2 Dehydration Reactions; 3.5.3 Oxidative Reactions; 3.5.4 Isomerization Reactions; 3.6 Prospects and Challenges; Notation; References; Chapter 4 Dense Metallic Membrane Reactors; 4.1 Introduction; 4.2 Gas Permeation in Dense Metallic Membranes; 4.2.1 Types of Dense Metallic Membranes; 4.2.2 Hydrogen Permeation Mechanism in Pd-Based Membranes; 4.2.3 Effect of Substrate on H2 Permeation; 4.3 Preparation of Dense Metallic Membranes; 4.3.1 Cold-Rolling and Diffusion Welding Method; 4.3.2 Electroless Plating Method.