Multi-agent machine learning : a reinforcement approach /

"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Schwartz, Howard M. (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, NJ : John Wiley & Sons, [2014]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--
"Provide an in-depth coverage of multi-player, differential games and Gam theory"--
Φυσική περιγραφή:1 online resource.
Βιβλιογραφία:Includes bibliographical references and index.
ISBN:9781118884485 (ePub)
1118884485 (ePub)
9781118884478 (Adobe PDF)
1118884477 (Adobe PDF)
9781118884614
1118884612
9781322094762
1322094764
DOI:10.1002/9781118884614