Mathematical foundations of image processing and analysis. 2 /

Mathematical Imaging is currently a rapidly growing field in applied mathematics, with an increasing need for theoretical mathematics. This book, the second of two volumes, emphasizes the role of mathematics as a rigorous basis for imaging sciences. It provides a comprehensive and convenient overvie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pinoli, Jean-Charles (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : ISTE, 2014.
Σειρά:Digital signal and image processing series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05658nam a2200625 4500
001 ocn886880486
003 OCoLC
005 20170124070216.7
006 m o d
007 cr cnu---unuuu
008 140814s2014 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d DG1  |d EBLCP  |d E7B  |d RECBK  |d DEBSZ  |d CCO  |d OCLCO  |d COO  |d OCLCQ  |d OCLCO  |d DEBBG  |d GrThAP 
019 |a 885122545 
020 |a 9781118984567  |q (electronic bk.) 
020 |a 1118984560  |q (electronic bk.) 
020 |a 9781118984574  |q (electronic bk.) 
020 |a 1118984579  |q (electronic bk.) 
020 |z 9781848217485 
020 |z 184821748X 
029 1 |a AU@  |b 000053548429 
029 1 |a DEBSZ  |b 431731632 
029 1 |a DEBBG  |b BV043397043 
035 |a (OCoLC)886880486  |z (OCoLC)885122545 
050 4 |a TA1637.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.4/20151  |2 22 
049 |a MAIN 
100 1 |a Pinoli, Jean-Charles,  |e author. 
245 1 0 |a Mathematical foundations of image processing and analysis.  |n 2 /  |c Jean-Charles Pinoli. 
264 1 |a London :  |b ISTE,  |c 2014. 
300 |a 1 online resource (1 volume). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Digital signal and image processing series 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; Introduction; PART 5: Twelve Main Geometrical Frameworks for Binary Images; Chapter 21: The Set-Theoretic Framework; 21.1. Paradigms; 21.2. Mathematical concepts and structures; 21.2.1. Mathematical disciplines; 21.3. Main notions and approaches for IPA; 21.3.1. Pixels and objects; 21.3.2. Pixel and object separation; 21.3.3. Local finiteness; 21.3.4. Set transformations; 21.4. Main applications for IPA; 21.4.1. Object partition and object components; 21.4.2. Set-theoretic separation of objects and object removal. 
505 8 |a 21.4.3. Counting of separate objects21.4.4. Spatial supports border effects; 21.5. Additional comments; Historical comments and references; Bibliographic notes and additional readings; Further topics and readings; Some references on applications to IPA; Chapter 22: The Topological Framework; 22.1. Paradigms; 22.2. Mathematical concepts and structures; 22.2.1. Mathematical disciplines; 22.2.2. Special classes of subsets of Rn; 22.2.3. Fell topology for closed subsets; 22.2.4. Hausdorff topology for compact subsets; 22.2.5. Continuity and semi-continuity of set transformations. 
505 8 |a 22.2.6. Continuity of basic set-theoretic and topological operations22.3. Main notions and approaches for IPA; 22.3.1. Topologies in the spatial domain Rn; 22.3.2. The Lebesgue-(Čech) dimension; 22.3.3. Interior and exterior boundaries; 22.3.3.1. Topologically regular objects; 22.3.4. Path-connectedness; 22.3.5. Homeomorphic objects; 22.4. Main applications to IPA; 22.4.1. Topological separation of objects and object removal; 22.4.1.1. (Path)-connected components; 22.4.2. Counting of separate objects; 22.4.3. Contours of objects; 22.4.4. Metric diameter; 22.4.5. Skeletons of proper objects. 
505 8 |a 22.4.6. Dirichlet-Voronoi's diagrams22.4.7. Distance maps; 22.4.8. Distance between objects; 22.4.9. Spatial support's border effects; 22.5. Additional comments; Historical comments and references; Bibliographic notes and additional readings; Further topics and readings; Some references on applications to IPA; Chapter 23: The Euclidean Geometric Framework; 23.1. Paradigms; 23.2. Mathematical concepts and structures; 23.2.1. Mathematical disciplines; 23.2.2. Euclidean dimension; 23.2.3. Matrices; 23.2.4. Determinants; 23.2.5. Eigenvalues, eigenvectors and trace of a matrix. 
505 8 |a 23.2.6. Matrix norms23.3. Main notions and approaches for IPA; 23.3.1. Affine transformations; 23.3.2. Special groups of affine transformations; 23.3.3. Linear and affine sub-spaces and Grassmannians; 23.3.4. Linear and affine spans; 23.4. Main applications to IPA; 23.4.1. Basic spatial transformations; 23.4.1.1. Reflected objects; 23.4.2. Hyperplanes; 23.4.3. Polytopes; 23.4.4. Minkowski addition and subtraction; 23.4.5. Continuity and semi-continuities of Euclidean transformations; 23.5. Additional comments; Historical comments and references; Commented bibliography and additional readings. 
520 |a Mathematical Imaging is currently a rapidly growing field in applied mathematics, with an increasing need for theoretical mathematics. This book, the second of two volumes, emphasizes the role of mathematics as a rigorous basis for imaging sciences. It provides a comprehensive and convenient overview of the key mathematical concepts, notions, tools and frameworks involved in the various fields of gray-tone and binary image processing and analysis, by proposing a large, but coherent, set of symbols and notations, a complete list of subjects and a detailed bibliography. It establishes. 
504 |a Includes bibliographical references and index. 
650 0 |a Image processing  |x Mathematics. 
650 0 |a Image analysis  |x Mathematics. 
650 4 |a Convolutions (Mathematics) 
650 4 |a Image processing  |x Mathematical models. 
650 4 |a Mathematics. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Pinoli, Jean-Charles, author.  |t Mathematical foundations of image processing and analysis. 2  |z 9781848217485  |w (OCoLC)884551293 
830 0 |a Digital signal and image processing series. 
856 4 0 |u https://doi.org/10.1002/9781118984574  |z Full Text via HEAL-Link 
994 |a 92  |b DG1