Nanotechnologies for synthetic super non-wetting surfaces /
Texturing surfaces at micro- and/or nano-scales modifies the interactions of liquids and solids. This book is a summary of the state of the art concerning the development and use of micro/nano-technologies for the design of synthetic liquid repellent surfaces with a particular focus on super-omnipho...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
ISTE, Ltd. ;
2014.
Hoboken : Wiley, 2014. |
Σειρά: | FOCUS Series.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Cover; Title Page; Copyright; Contents; Chapter 1: Nanotechnologies for Synthetic Super Non-wetting Surfaces; 1.1. Introduction; 1.2. Modeling of liquid-solid interaction; 1.3. Microscale and nanoscale coating processes; 1.4. Experimental characterization; 1.5. Emerging applications; 1.6. Conclusion; 1.7. Bibliography; Chapter 2: Wetting on Heterogeneous Surfaces; 2.1. Introduction; 2.2. Wetting of an ideal surface: the Young contact angle; 2.3. Real surfaces: apparent contact angle and contact angle hysteresis; 2.4. Relationship between contact angle hysteresis and drop adhesion.
- 2.5. Wetting of heterogeneous materials: the Wenzel and Cassie-Baxter models2.5.1. Impact of roughness: the Wenzel wetting state; 2.5.2. Impact of chemical heterogeneities: the Cassie-Baxter wetting state; 2.5.3. The lotus effect: toward super non-wetting surfaces; 2.6. Conclusion; 2.7. Bibliography; Chapter 3: Engineering Super Non-wetting Materials; 3.1. Introduction; 3.2. Surface robustness; 3.2.1. Stability of Cassie and Wenzel wetting states; 3.2.2. The contact line pinning criterion; 3.2.3. The Cassie to Wenzel transition; 3.2.4. Influence of sidewall angle.
- 3.2.5. Designing superoleophobic surfaces3.2.6. Conclusion; 3.3. Contact angle hysteresis on super non-wetting materials; 3.3.1. Contact line pinning on dilute micropillars; 3.3.2. Computing metastable states; 3.3.3. Contact angle hysteresis modeling: perspectives; 3.4. Conclusion; 3.5. Bibliography; Chapter 4: Fabrication of Synthetic Super Non-wetting Surfaces; 4.1. Introduction; 4.2. Full substrate technologies; 4.2.1. Thermal evaporation; 4.2.2. Pulsed laser deposition; 4.2.3. Sputtering deposition; 4.2.4. Atomic layer deposition; 4.2.5. Plasma-enhanced chemical vapor deposition.
- 4.2.6. Thermal spraying deposition4.2.7. Electrospray deposition; 4.2.8. Electrospinning; 4.2.9. Electroless plating deposition; 4.2.10. Electroplating; 4.2.11. Chemical solution deposition (spin/dip/spray/blade coating); 4.2.12. Colloidal assembly; 4.2.13. Hydrothermal synthesis; 4.2.14. Catalyst-assisted growth; 4.2.15. Controlled radical polymerizations; 4.3. Direct writing technologies; 4.3.1. Inkjet printing; 4.3.2. Drop casting; 4.3.3. Laser-assisted deposition; 4.3.4. Contact printing; 4.3.5. Dip pen lithography; 4.3.6. Pneumatic dispensing; 4.3.7. Screen printing; 4.4. Conclusion.
- 4.5. BibliographyChapter 5: Characterization Techniques for Super Non-wetting Surfaces; 5.1. Introduction; 5.2. The sessile drop method; 5.2.1. Equipment and experimental procedure; 5.2.2. Drop shape analysis; 5.2.3. The volume oscillation method; 5.2.4. The tilted plate method; 5.3. Wilhelmy method; 5.4. Robustness measurement; 5.4.1. Drop compression; 5.4.2. Drop evaporation; 5.4.3. Hydrostatic pressure; 5.4.4. Drop impact; 5.4.5. Other methods (electrowetting and surface vibrations); 5.4.6. Conclusion on the robustness measurement techniques.