Uncertainty theories and multisensor data fusion /

Addressing recent challenges and developments in this growing field, Multisensor Data Fusion Uncertainty Theory first discusses basic questions such as: Why and when is multiple sensor fusion necessary? How can the available measurements be characterized in such a case? What is the purpose and the s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Appriou, Alain (Συγγραφέας)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London [England] ; Hoboken, New Jersey : ISTE : Wiley, 2014.
Σειρά:Instrumentation and measurement series.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06163nam a2200697 4500
001 ocn889305696
003 OCoLC
005 20170124071139.7
006 m o d
007 cr cn|||||||||
008 140721t20142014enka obf 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d YDXCP  |d OCLCF  |d EBLCP  |d DG1  |d N$T  |d RECBK  |d DEBSZ  |d OCLCO  |d COO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO  |d DEBBG  |d OCLCO  |d GrThAP 
019 |a 884014933  |a 889728014  |a 961582953  |a 962702761 
020 |a 9781118578575  |q (e-book) 
020 |a 1118578570  |q (e-book) 
020 |a 1118578635 
020 |a 9781118578636 
020 |z 9781848213548 
020 |z 1848213549 
029 1 |a CHBIS  |b 010442107 
029 1 |a CHVBK  |b 334088313 
029 1 |a DEBSZ  |b 431723702 
029 1 |a NZ1  |b 15753446 
029 1 |a DEBBG  |b BV043397080 
035 |a (OCoLC)889305696  |z (OCoLC)884014933  |z (OCoLC)889728014  |z (OCoLC)961582953  |z (OCoLC)962702761 
050 4 |a TK7872.D48  |b .A677 2014eb 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 623.042  |2 23 
049 |a MAIN 
100 1 |a Appriou, Alain,  |e author. 
245 1 0 |a Uncertainty theories and multisensor data fusion /  |c Alain Appriou. 
264 1 |a London [England] ;  |a Hoboken, New Jersey :  |b ISTE :  |b Wiley,  |c 2014. 
264 4 |c ©2014 
300 |a 1 online resource (278 pages) :  |b illustrations, graphs. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Instrumentation and measurement series 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Introduction; Chapter 1. Multisensor Data Fusion; 1.1. Issues at stake; 1.2. Problems; 1.2.1. Interpretation and modeling of data; 1.2.2. Reliability handling; 1.2.3. Knowledge propagation; 1.2.4. Matching of ambiguous data; 1.2.5. Combination of sources; 1.2.6. Decision-making; 1.3. Solutions; 1.3.1. Panorama of useful theories; 1.3.2. Process architectures; 1.4. Position of multisensor data fusion; 1.4.1. Peculiarities of the problem; 1.4.2. Applications of multisensor data fusion; Chapter 2. Reference Formalisms; 2.1. Probabilities; 2.2. Fuzzy sets. 
505 8 |a 2.3. Possibility theory2.4. Belief functions theory; 2.4.1. Basic functions; 2.4.2. A few particularly useful cases; 2.4.3. Conditioning/deconditioning; 2.4.4. Refinement/coarsening; Chapter 3. Set Management and Information Propagation; 3.1. Fuzzy sets: propagation of imprecision; 3.2. Probabilities and possibilities: the same approach to uncertainty; 3.3. Belief functions: an overarching vision in terms of propagation; 3.3.1. A generic operator: extension; 3.3.2. Elaboration of a mass function with minimum specificity; 3.3.3. Direct exploitation of the operator of extension. 
505 8 |a 3.4. Example of application: updating of knowledge over timeChapter 4. Managing The Reliability of Information; 4.1. Possibilistic view; 4.2. Discounting of belief functions; 4.3. Integrated processing of reliability; 4.4. Management of domains of validity of the sources; 4.5. Application to fusion of pixels from multispectral images; 4.6. Formulation for problems of estimation; Chapter 5. Combination of Sources; 5.1. Probabilities: a turnkey solution, Bayesian inference; 5.2. Fuzzy sets: a grasp of axiomatics; 5.3. Possibility theory: a simple approach to the basic principles. 
505 8 |a 5.4. Theory of belief functions: conventional approaches5.5. General approach to combination: any sets and logics; 5.6. Conflict management; 5.7. Back to Zadeh's paradox; Chapter 6. Data Modeling; 6.1. Characterization of signals; 6.2. Probabilities: immediate taking into account; 6.3. Belief functions: an open-ended and overarching framework; 6.3.1. Integration of data into the fusion process; 6.3.2. Generic problem: modeling of Cij values; 6.3.3. Modeling measurements with stochastic learning; 6.3.4. Modeling measurements with fuzzy learning; 6.3.5. Overview of models for belief functions. 
505 8 |a 6.4. Possibilities: a similar approach6.5. Application to a didactic example of classification; Chapter 7. Classification: Decision-Making And Exploitation of the Diversity of Information Sources; 7.1. Decision-making: choice of the most likely hypothesis; 7.2. Decision-making: determination of the most likely set of hypotheses; 7.3. Behavior of the decision operator: some practical examples; 7.4. Exploitation of the diversity of information sources: integration of binary comparisons. 
520 |a Addressing recent challenges and developments in this growing field, Multisensor Data Fusion Uncertainty Theory first discusses basic questions such as: Why and when is multiple sensor fusion necessary? How can the available measurements be characterized in such a case? What is the purpose and the specificity of information fusion processing in multiple sensor systems? Considering the different uncertainty formalisms, a set of coherent operators corresponding to the different steps of a complete fusion process is then developed, in order to meet the requirements identified in the first part of the book. 
650 0 |a Multisensor data fusion. 
650 0 |a Multisensor data fusion  |v Congresses. 
650 0 |a Multisensor data fusion  |v Handbooks, manuals, etc. 
650 4 |a Multisensor data fusion  |v Congresses. 
650 4 |a Multisensor data fusion  |v Handbooks, manuals, etc. 
650 4 |a Multisensor data fusion. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Multisensor data fusion.  |2 fast  |0 (OCoLC)fst01029095 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Handbooks and manuals.  |2 fast  |0 (OCoLC)fst01423877 
776 0 8 |i Print version:  |a Appriou, Alain.  |t Uncertainty theories and multisensor data fusion.  |d London, [England] ; Hoboken, New Jersey : ISTE : Wiley, ©2014  |h xiv, 262 pages  |k Instrumentation and measurement series.  |z 9781848213548 
830 0 |a Instrumentation and measurement series. 
856 4 0 |u https://doi.org/10.1002/9781118578636  |z Full Text via HEAL-Link 
994 |a 92  |b DG1