Differential and Differential-Algebraic Systems for the Chemical Engineer : Solving Numerical Problems /

This fourth in a suite of five practical guides is an engineer's companion to using numerical methods for the solution of complex mathematical problems. It explains the theory behind current numerical methods and shows in a step-by-step fashion how to use them. The volume focuses on differentia...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Buzzi-Ferraris, G. (Guido)
Άλλοι συγγραφείς: Manenti, Flavio
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Weinheim, Germany : Wiley-VCH, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06213nam a2200709 4500
001 ocn890441787
003 OCoLC
005 20170124072355.5
006 m o d
007 cr cnu---unuuu
008 140912s2014 gw ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d E7B  |d DG1  |d OCLCQ  |d YDXCP  |d OCLCQ  |d CDX  |d OCLCQ  |d OCLCF  |d RECBK  |d UWO  |d COO  |d DEBBG  |d EBLCP  |d OCLCQ  |d GrThAP 
020 |a 9783527667109  |q (electronic bk.) 
020 |a 3527667105  |q (electronic bk.) 
020 |a 9783527667130  |q (electronic bk.) 
020 |a 352766713X  |q (electronic bk.) 
020 |a 1322110654  |q (ebk) 
020 |a 9781322110653  |q (ebk) 
020 |a 9783527332755 
020 |a 3527332758 
020 |a 9783527667123  |q (ePub) 
020 |a 3527667121  |q (ePub) 
020 |a 9783527667116  |q (Mobi) 
020 |a 3527667113  |q (Mobi) 
029 1 |a AU@  |b 000053968150 
029 1 |a CHBIS  |b 010259811 
029 1 |a CHVBK  |b 325942226 
029 1 |a DEBBG  |b BV043397118 
029 1 |a NZ1  |b 16077344 
029 1 |a ZWZ  |b 188128301 
035 |a (OCoLC)890441787 
050 4 |a QA371 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.35 
049 |a MAIN 
100 1 |a Buzzi-Ferraris, G.  |q (Guido) 
245 1 0 |a Differential and Differential-Algebraic Systems for the Chemical Engineer :  |b Solving Numerical Problems /  |c Guido Buzzi-Ferraris, Flavio Manenti. 
264 1 |a Weinheim, Germany :  |b Wiley-VCH,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a This fourth in a suite of five practical guides is an engineer's companion to using numerical methods for the solution of complex mathematical problems. It explains the theory behind current numerical methods and shows in a step-by-step fashion how to use them. The volume focuses on differential and differential-algebraic systems, providing numerous real-life industrial case studies to illustrate this complex topic. It describes the methods, innovative techniques and strategies that are all implemented in a freely available toolbox called BzzMath, which is developed and maintained by the authors and provides up-to-date software tools for all the methods described in the book. Numerous examples, sample codes, programs and applications are taken from a wide range of scientific and engineering fields, such as chemical engineering, electrical engineering, physics, medicine, and environmental science. As a result, engineers and scientists learn how to optimize processes even before entering the laboratory. 
504 |a Includes bibliographical references and index. 
505 0 |a Related Titles; Title Page; Copyright; Preface; Outline of This Book; Notation; BzzMath Library Style; Basic Requirements for Using BzzMath Library; How to Install Examples Collected in This Book; A Few Steps to Install BzzMath Library; Include the BzzMath Library in a Calculation Program; Chapter 1: Definite Integrals; 1.1 Introduction; 1.2 Calculation of Weights; 1.3 Accuracy of Numerical Methods; 1.4 Modification of the Integration Interval; 1.5 Main Integration Methods; 1.6 Algorithms Derived from the Trapezoid Method; 1.7 Error Control; 1.8 Improper Integrals. 
505 8 |a 1.9 Gauss-Kronrod Algorithms1.10 Adaptive Methods; 1.11 Parallel Computations; 1.12 Classes for Definite Integrals; 1.13 Case Study: Optimal Adiabatic Bed Reactors for Sulfur Dioxide with Cold Shot Cooling; Chapter 2: Ordinary Differential Equations Systems; 2.1 Introduction; 2.2 Algorithm Accuracy; 2.3 Equation and System Conditioning; 2.4 Algorithm Stability; 2.5 Stiff Systems; 2.6 Multistep and Multivalue Algorithms for Stiff Systems; 2.7 Control of the Integration Step; 2.8 Runge-Kutta Methods; 2.9 Explicit Runge-Kutta Methods. 
505 8 |a 2.10 Classes Based on Runge-Kutta Algorithms in the BzzMath Library2.11 Semi-Implicit Runge-Kutta Methods; 2.12 Implicit and Diagonally Implicit Runge-Kutta Methods; 2.13 Multistep Algorithms; 2.14 Multivalue Algorithms; 2.15 Multivalue Algorithms for Nonstiff Problems; 2.16 Multivalue Algorithms for Stiff Problems; 2.17 Multivalue Classes in BzzMath Library; 2.18 Extrapolation Methods; 2.19 Some Caveats; Chapter 3: ODE: Case Studies; 3.1 Introduction; 3.2 Nonstiff Problems; 3.3 Volterra System; 3.4 Simulation of Catalytic Effects; 3.5 Ozone Decomposition; 3.6 Robertson's Kinetic. 
505 8 |a 3.7 Belousov's Reaction3.8 Fluidized Bed; 3.9 Problem with Discontinuities; 3.10 Constrained Problem; 3.11 Hires Problem; 3.12 Van der Pol Oscillator; 3.13 Regression Problems with an ODE Model; 3.14 Zero-Crossing Problem; 3.15 Optimization-Crossing Problem; 3.16 Sparse Systems; 3.17 Use of ODE Systems to Find Steady-State Conditions of Chemical Processes; 3.18 Industrial Case: Spectrokinetic Modeling; Chapter 4: Differential and Algebraic Equation Systems; 4.1 Introduction; 4.2 Multivalue Method; 4.3 DAE Classes in the BzzMath Library; Chapter 5: DAE: Case Studies; 5.1 Introduction. 
505 8 |a 5.2 Van der Pol Oscillator5.3 Regression Problems with the DAE Model; 5.4 Sparse Structured Matrices; 5.5 Industrial Case: Distillation Unit; Notations for Table 5.1; Chapter 6: Boundary Value Problems; 6.1 Introduction; 6.2 Shooting Methods; 6.3 Special Boundary Value Problems; 6.4 More General BVP Methods; 6.5 Selection of the Approximating Function; 6.6 Which and How Many Support Points Have to Be Considered?; 6.7 Which Variables Should Be Selected as Adaptive Parameters?; 6.8 The BVP Solution Classes in the BzzMath Library; 6.9 Adaptive Mesh Selection; 6.10 Case studies. 
650 0 |a Differential equations. 
650 0 |a Differential algebra. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential algebra.  |2 fast  |0 (OCoLC)fst00893436 
650 7 |a Differential equations.  |2 fast  |0 (OCoLC)fst00893446 
655 4 |a Electronic books. 
700 1 |a Manenti, Flavio. 
776 0 8 |i Print version:  |z 9781322110653 
856 4 0 |u https://doi.org/10.1002/9783527667109  |z Full Text via HEAL-Link 
994 |a 92  |b DG1