Electrokinetics for petroleum and environmental engineers /

"Electrokinetics is a term applied to a group of physicochemical phenomena involving the transport of charges, action of charged particles, effects of applied electric potential and fluid transport in various porous media to allow for a desired migration or flow to be achieved. These phenomena...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chilingar, George V., 1929-
Άλλοι συγγραφείς: Haroun, Mohammed
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, New Jersey : John Wiley & Sons, Inc., 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Cover; Half Title page; Title page; Copyright page; Dedication; Foreword; List of Contributors; Chapter 1: Introduction to Electrokinetics; 1 Introduction; 1.1 Factors Influencing Electrokinetic Phenomena; 1.2 Zeta Potential and the Electric Double Layer Interaction; 1.3 Coehn's Rule; 1.4 Combined Flow Rate Equation; 1.5 Dewatering of Soils; 1.6 Use of Electrokinetics for Stabilization of Week Grounds; 1.7 Bioelectroremediation; 1.8 Electrical Enhanced Oil Recovery (EEOR); 1.9 Improving Acidizing of Carbonates; 1.10 Economic Feasibility; 1.11 Releasing Stuck Drillpipe; 1.12 Summary
  • 3.5 Electrokinetically Enhanced Oil Recovery3.6 DCEOR and Energy Storage; 3.7 Electro-chemical Basis for DCEOR; 3.8 Role of the Helmholtz Double Layer; 3.9 DCEOR Field Operations; 3.10 DCEOR Field Demonstrations; 3.11 Produced Fluid Changes; 3.12 Laboratory Measurements; 3.13 Technology Comparisons; 3.14 Summary; Nomenclature; References; Websites; Chapter 4: EEOR in Carbonate Reservoirs; 4.1 Introduction; 4.2 Electrically Enhanced Oil Recovery (EEOR)
  • EK Assisted WF; 4.3 SMART (Simultaneous/Sequential Modified Assisted Recovery Techniques)
  • 4.4 (SMART EOR) Electrokinetic-Assisted Nano-Flooding/Surfactant-Flooding4.5 Electrokinetics-Assisted Waterflooding with Low Concentration of HCl; 4.6 Effect of EEOR and SMART EOR in Carbonate Reservoirs at Reservoir Conditions; 4.7 Economics; Conclusions; Nomenclature; References; Chapter 5: Mathematical Modeling of Electrokinetic Transport and Enhanced Oil Recovery In Porous Geo-Media; 5.1 Introduction; 5.2 Basics of EK Transport Modeling; 5.3 Fundamental Governing Equations; 5.4 Mathematical Model and Solution of Ek Transport; 5.5 EK Mass Transport Models
  • 5.6 Coupling of Electrical and Pressure Gradients5.7 Mathematical Modeling of EKEOR; 5.8 Fundamental Governing Equations for EKEOR Model; 5.9 Solution Strategy; 5.10 Numerical Implementation; 5.11 Summary; References; Index